

# Hydrogen from Glycerol: A Feasibility Study

S. Ahmed, D. Papadias Argonne National Laboratory

Presented at the 2010 Hydrogen Program Annual Merit Review Meeting Washington DC, June 8, 2010

Project ID: PD003

This presentation does not contain any proprietary, confidential, or otherwise restricted information



## **Project Overview**

## <u>Timeline</u>

- Project Start: October 2009
- Project End: TBD

#### **Barriers**

- D. Feedstock Issues
- E. Greenhouse Gas Emissions

#### **Budget**

FY10 - \$100K + TBD

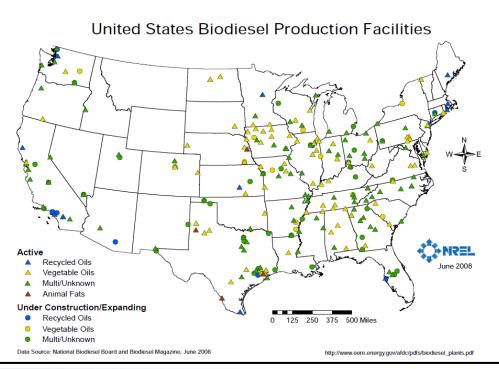
Partners

TBD



## **Relevance - Technical Overview**

Background


- The rapid growth in biodiesel production has led to an abundance of glycerol
- The crude glycerol, containing salts and methanol, has to be disposed as hazardous waste

Opportunity

- The alcohol and water content in crude glycerol is acceptable for reforming
- Secondary products from crude glycerol are attractive to biodiesel producers

# Relevance - Glycerol can contribute to the mix of feedstock used in the H<sub>2</sub> refueling infrastructure

- Glycerol, a product of biomass and animal fats, is a renewable resource
- As a liquid, glycerol has high energy density (heating value) and is easy to transport
- Glycerol can be converted to H<sub>2</sub> to refuel fuel cell vehicles
  - Glycerol can also be used by reformate-based stationary fuel cell systems
- The hydrogen can be generated at or close to biodiesel production facilities
- Glycerol production capacity (2008) can yield 200,000 kg of H<sub>2</sub> per day



## **Relevance - Objective**

Objective

- Evaluate the economic feasibility of producing hydrogen from glycerol derived as a byproduct of the biodiesel industry
  - For the distributed production of hydrogen
  - Based on the steam reforming of glycerol, followed by purification using pressure swing adsorption

## Approach

- Review the availability and price of glycerol
- Evaluate hydrogen-from-glycerol process at a distributed hydrogen production facility using systems analysis
- Estimate cost of hydrogen and its sensitivities

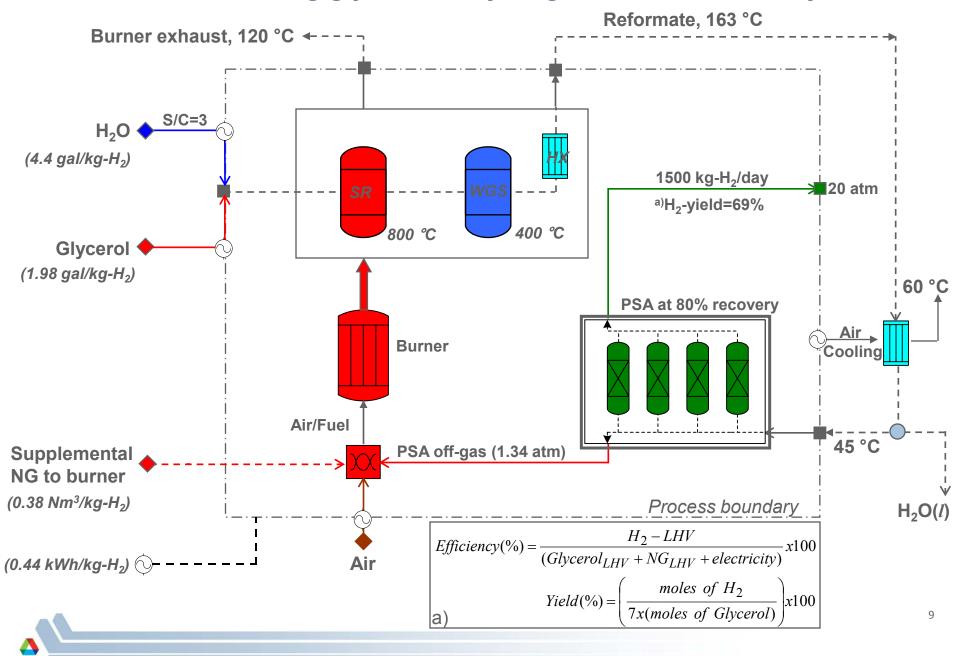
## Technical Accomplishments and Progress Glycerol supply and price

| <u>Biodiesel</u>                        |         |                         |
|-----------------------------------------|---------|-------------------------|
| US Biodiesel Production Capacity (2008) | 19.0    | 10 <sup>9</sup> lb/year |
| US <b>Biodiesel</b> Production (2008)   | 5.2     | 10 <sup>9</sup> lb/year |
| <u>Glycerol</u>                         |         |                         |
| US Crude Glycerol from Biodiesel (2008) | 0.52    | 10 <sup>9</sup> lb/year |
| World Production of Glycerol (2008)     | 3.8     | 10 <sup>9</sup> lb/year |
| World Demand for Glycerol (2005)        | 2.0     | 10 <sup>9</sup> lb/year |
| Price of Crude Glycerol                 | 3 – 10  | cents/lb                |
| Price of Refined Glycerol               | 40 – 50 | cents/lb                |

## Technical Accomplishments and Progress Systems analysis was followed by cost estimation using H2A

**Production Unit** 

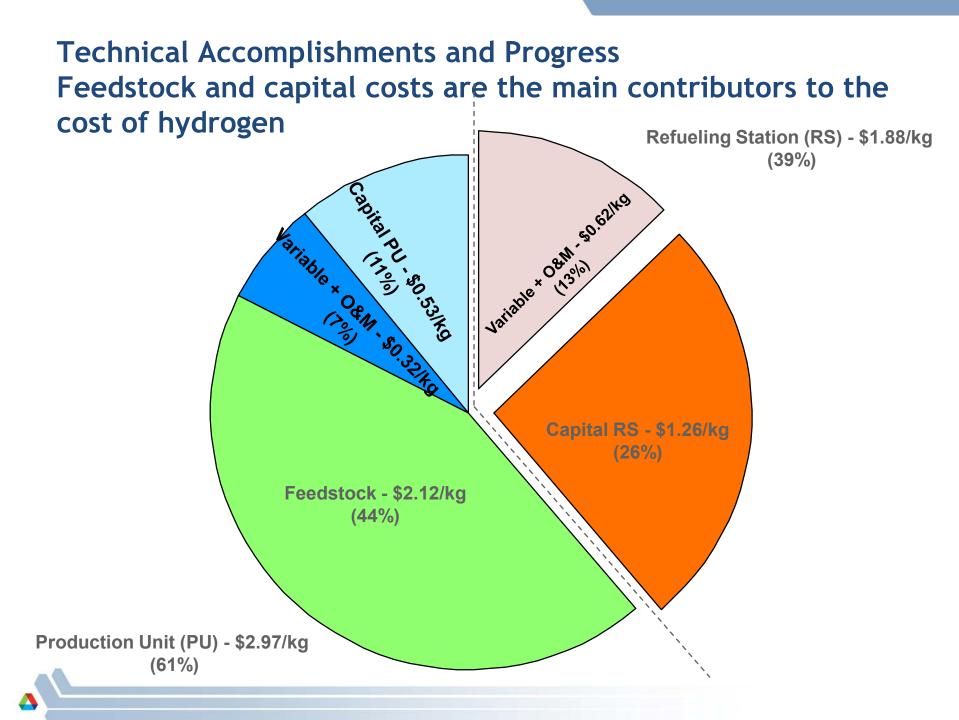
- Crude Glycerol Feed
- Steam Reformer
- Water Gas Shift Reactor
- Pressure Swing Adsorption Unit for H<sub>2</sub> Purification


**Refueling Station** 

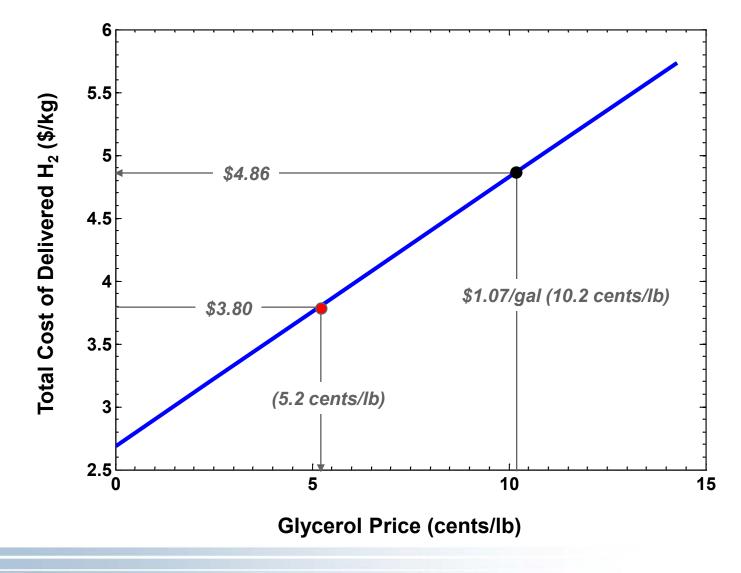
Compression, Storage, and Dispensing

Cost Analysis

H2A

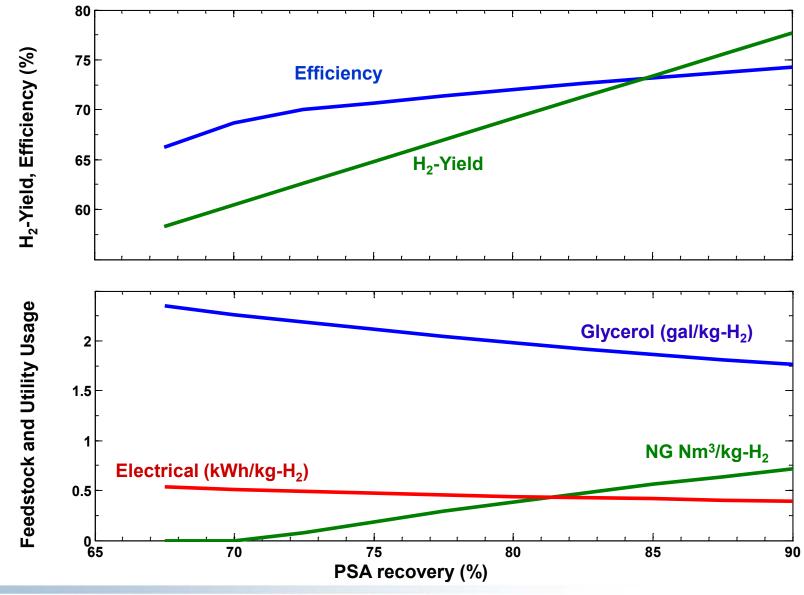

#### Base Case: Converting glycerol to hydrogen with an efficiency<sup>(a)</sup> of 72%




## Technical Accomplishments and Progress Base Case: Cost of H<sub>2</sub> from glycerol is estimated at \$4.86/kg

| Distributed Production of Hydrogen      |  |
|-----------------------------------------|--|
| from Bio-Derived Renewable Liquid Fuels |  |

| Characteristics                               | Units  | H2A (v2.1.3)<br>Glycerol | H2A (v2.1.3)<br>Ethanol |
|-----------------------------------------------|--------|--------------------------|-------------------------|
| Production Unit Energy Efficiency             | %      | 72.0                     | 72.0                    |
| Operating Capacity Factor                     | %      | 85.2                     | 85.2                    |
| Production Unit Capital Cost<br>(Uninstalled) | \$     | 1.0M                     | 1.0M                    |
| Feedstock Cost                                | \$/gal | 1.07 (0.10 ¢/lb)         | 1.07                    |
| Hydrogen Cost                                 | \$/kg  | 4.86                     | 4.83                    |




Technical Accomplishments and Progress Glycerol price needs to be <5.2 cents/lb (\$0.55/gal) to meet the hydrogen cost target of \$3.80/kg



**Technical Accomplishments and Progress** Changing the cost of H<sub>2</sub> by 5% would require 40% change in capital cost or, 11% change in feedstock price \$1.4M SIM-base case 5.5 Total Cost of Delivered H<sub>2</sub> (\$/kg) PU Capital Cost: 600 K 5 4.86 24 cents (5%) 40% 11%-4.62 4.5 0.2 (base case) 4 3.80 3.5 8 10 6 7 9 11 12 13 14 **Glycerol Price (cents/lb)** 

Technical Accomplishments and Progress Hydrogen yield improves with higher PSA recovery, but requires more natural gas to meet reforming energy needs



#### Technical Accomplishments and Progress A hydrogen cost of \$3.80/kg may be achievable with process maturity

|                          | —— "Better" —            | Base                               | "Worse"                   |
|--------------------------|--------------------------|------------------------------------|---------------------------|
| H <sub>2</sub> Cost      | \$3.80/kg                | \$4.86/kg                          | \$5.90/kg                 |
| Feedstock<br>Cost        | \$0.74/gal<br>7 cents/lb | \$1.07/gal<br><i>10.2 cents/lb</i> | \$1.58/gal<br>15 cents/lb |
| Efficiency               | 74% 🕇                    | 72%                                | 72%                       |
| Capital (PU)             | \$750K 🖡                 | \$1M                               | \$1M                      |
| Plant Capacity<br>Factor | 95% 🕇                    | 85.2%                              | 85.2%                     |

## Technical Accomplishments and Progress Some Projections

| US Crude Glycerol <i>Produced</i> from Biodiesel (2008)                                 | 0.52  | 10 <sup>9</sup> lb/year                |
|-----------------------------------------------------------------------------------------|-------|----------------------------------------|
| H <sub>2</sub> from Glycerol (Base Case)                                                | 0.505 | kg-H <sub>2</sub> /gal- glycerol       |
| H <sub>2</sub> from Crude Glycerol                                                      | 55    | 10 <sup>3</sup> kg-H <sub>2</sub> /day |
| Distributed H <sub>2</sub> Production Center Capacity<br>(operating at 85% of capacity) | 1275  | kg/day                                 |
| No. of Distributed H <sub>2</sub> Production Centers                                    | 43    |                                        |

| US Crude Glycerol <i>Capacity</i> from Biodiesel (2008) | 19.0 | 10 <sup>9</sup> lb/year |
|---------------------------------------------------------|------|-------------------------|
| Capacity / Production Factor (2008)                     | 3.7  |                         |

## Collaborations

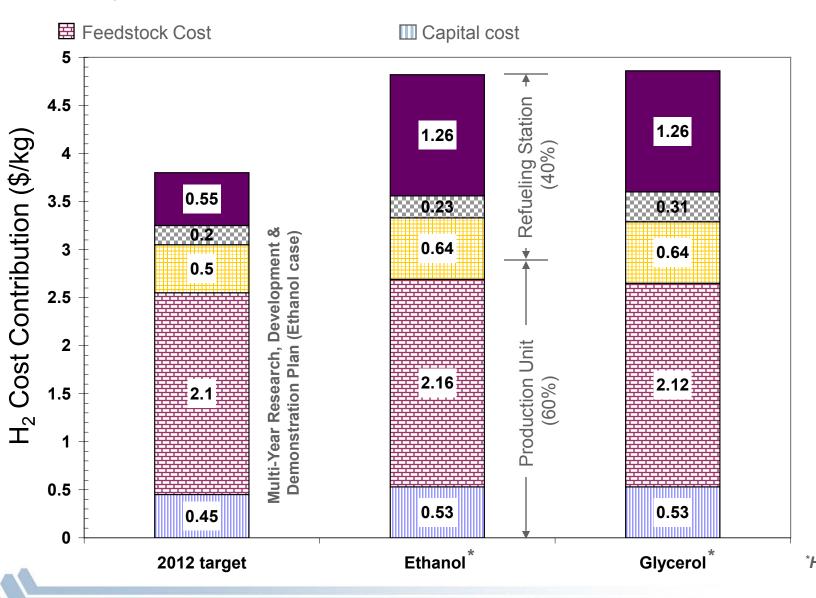
- The system diagram was modified from a similar system used by DTI for hydrogenfrom-ethanol
- Collaboration plans will depend on future direction of this project
  - Catalysis, clean-up, etc.

## Summary

- Glycerol supply is outpacing its demand as a result of the biodiesel industry
  - Biodiesel industry, researchers are seeking high value secondary products from glycerol
- Glycerol is renewable and can be efficiently converted to hydrogen (72% efficiency is feasible)
  - When the PSA recovery is 80% or more
  - When the steam-to-carbon molar ratio is  $\approx 3$
- With crude glycerol at 1.07/gal (10 ¢/lb) the estimated H<sub>2</sub> cost is 4.86/kg
  - Cost of H<sub>2</sub> produced from glycerol is similar to that from ethanol
- The cost of hydrogen is highly sensitive to the price of the feedstock
- To achieve the target H2 cost of \$3.80 /kg with a glycerol price of 7 ¢/lb, need a combination of
  - Process efficiency of 74%
  - Capital cost of \$750 K
  - Plant operating capacity of 95%

## **Proposed Future Work**

- Extend systems analysis to evaluate most promising production process and operating conditions
  - Define range of operating conditions (T, P, S/C, ...)
- Identify key challenges with glycerol reforming
  - Feed delivery, conversion, coke formation, crude glycerol cleanup, etc.
- Address technical barriers
  - Feed delivery, catalysis, reactor design, etc.)


## **Supplementary Slides**

#### The new version of H2A increases the contribution of the Refueling Station costs

Storage, Compression, Dispensing Capital Cost

Variable O&M including Utilities

Fixed O&M



\*H2A (v2.1.3)