Composite Pd and Alloy Porous Stainless Steel Membranes for Hydrogen Production and Process Intensification

Yi Hua MA Center for Inorganic Membrane Studies (CIMS) Worcester Polytechnic Institute Department of Chemical Engineering June 8th, 2010

Project ID: PD007

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

- → Start : 5/7/2007
- → Finish : 5/6/2010
- ➔ 100% Complete

Budget

- → Total Project Cost: \$ 1,602,922
 - DOE Share: \$1,256,226
 - Recipient Share: \$ 346,696
- ➔ Funding Received:

FY08:	\$ 442,785
FY09:	\$ 420,638
FY10:	\$ 392,803

- → DOE Award #: DE-FC26-07NT43058
- ➔ DOE Project Manager:

Dr. Daniel Driscoll

Subcontractor

→ Adsorption Research Inc. (ARI)

Barriers

- ➔ Barriers Addressed:
- Long-term selectivity stability & re-producibility
- \succ H₂ flux targets
- Mixed gas & long-term WGS reaction studies
- Steady-state & unsteady-state CMR modeling simulations
- Process intensification analysis & process control strategies
- Absorbent selection & PSA system build-up and testing
- ➔ Technical Targets**

	H ₂ Flux [scfh/ft ²] [§]	Temp. [°C]	ΔP max. [psi]	H ₂ Purity	Sulfur Tolerance				
2010	200	300-600	400	99.5%	20 ppm				
2015	300	250-500	800-1000	99.9%	>100 ppm				
§ @ 100 psi ΔP H ₂ partial pressure									

CO Tolerance: Yes; WGS Activity: Yes

Project Objectives & Relevance

- Synthesis of composite Pd and Pd/alloy porous Inconel membranes for WGS shift reactors with long-term thermal, chemical and mechanical stability with special emphasis on the stability of hydrogen flux and selectivity
- Demonstration of the effectiveness and long-term stability of the WGS membrane shift reactor for the production of fuel-cell quality hydrogen
- Research and development of advanced gas clean-up technologies for sulfur removal to reduce the sulfur compounds to <2 ppm</p>
- Development of a systematic framework towards process intensification to achieve higher efficiencies and enhanced performance at a lower cost
- Rigorous analysis and characterization of the behavior of the resulting overall process system, as well as the design of reliable control and supervision/monitoring systems
- Assessment of the economic viability of the proposed intensification strategy through a comprehensive calculation of the cost of energy output and its determinants (capital cost, operation cost, fuel cost, etc.), followed by comparative studies against other existing pertinent energy technologies

Approach: Coal Gasification & CMR

Novel Catalytic Membrane Reactor (CMR):

4

Project Schedule & Milestones

Tasks		Year 1			Year 2				Year 3			
		Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
	Months											_
		6	9	12	15	18	21	24	27	30	33	36
Gas Clean-up & Fast PSA			M1		G1							
using Structured Adsorbent						M2						
										M3 •		
Manshuan a Curathaala	_	M4										
Membrane Synthesis				M5				G2				
Membrane Characterization &						M6						
Reactor Performance										M7		
Membrane Reactor Modeling			M8									
Process Intensification					M9							
Process Control System;								N410				
Design & Implementation												
Process Monitoring System;										M11		
Design & Implementation												
Program Management & Reporting												

Membrane Properties & Permeation Test Set-up

> Membrane:

Pd supported on porous Inconel (media grade 0.1 μm)

- Method of Preparation: Electroless Plating
- Geometry:

Tubular (Plated on the outside of a tube)

> Membrane Area ≈ 25 cm²

Shell-side Inlet Stream

Similar setup equipped w/ pre-heater, mixer, cold trap & GC was utilized for the mixed gas & WGS reaction tests

Long-Term Selectivity Stability

Elapsed Time [hours]

Excellent long-term H₂/He selectivity stability was achieved over a total testing period of ~3550 hours (>147 days).

Membrane #029 7.6 µm Pd/Inconel

Reproducible Long-Term Selectivity Stability: Membranes #030_{7.9 μm Pd}, #031_{7.0 μm Pd} & #033_{8.7 μm Pd}

Excellent leak mitigation and <u>re-producible</u> long-term H₂/He selectivity stability via high temperature pre-Annealing (at 550°C/He/12h) and surface Polishing (pAP) treatments

8

Mixed Gas Testing of Membrane #0297.6 µm Pd

- ➢ Mixed gas permeation testing for an additional ~3000 hours at ~400°C & at a △P range of 1-14 atm (P_{Low}=1 atm) w/ stable H₂ Flux, H₂/He Selectivity & no significant increase in He leak after successive testing at 400°C
- Below 10 scfh, high recovery (> 90%) and no significant/additional inhibiting effect of ~19% steam or CO on H₂ flux
- \succ Permeate: H₂ only, no other gases were detected
- Retentate: High-pressure CO₂ !!!

9

Progress Towards DOE H₂ Flux Targets

> At 442°C & at a △P of 100 psi (P_{High} =115 psia & P_{Low} =15 psia), the H₂ flux of the 3-5 µm thick Pd/Inconel membrane #032 was as high as ~359 scfh/ft² at the end of ~285 hours of testing with H₂/He selectivity of ~450 (H₂ purity ≥99.8%), which exceeded the DOE's 2010 and 2015 H₂ flux targets.

> * DOE-NETL Test Protocol v7 – 05/10/2008 DOE Target₂₀₁₅ :300 scfh/ft² @ <u>ΔP (H₂) =100 psi</u>, T = 300-600°C

Mixed Gas Testing of AA-6_{18.1 µm Pd}

$$P_{Total}$$
 = 212 psia
 P_{H2} = 116 psia
(Membrane: AA-6)
Area = 0.025 ft²

Selectivity > 2200

- Temperature dependant permeance inhibition due to CO observed at 350 and 400°C, insignificant above 400°C
- Gas boundary layer resistance observed by comparison of Mixture A (high diffusivity H₂/He) and Mixture B (low diffusivity H₂/CO₂)
- \succ H₂ recovery of up to 92% achieved at low GHSV

WGS CMR_{18.1 µm Pd} : CO & H₂O Feed

WGS CMR_{11.6 µm Pd} : Syngas Feed

Long-term WGS CMR_{13.1 µm Pd}

Feed Conditions22.7% CO, 22.0% H₂,
9.9% CO₂, 45.4% H₂OH2O/CO2.0H2O/CO2.0GHSV (h⁻¹):4500T (°C):450

Membrane: AA-8R									
Selectivity (F _{H2} /F _{He})									
Initial 4000									
After WGS Experiment	400 (-90%)								
Permeance (scfh/ft ² psi ^{0.5})									
Initial 27.9									
After WGS Experiment	26.6 (-4.6%)								

- Stable CO conversion and H₂ recovery were observed for up to 80 hours
 Stable H, normagnes ofter WCS test
- > Stable H_2 permeance after WGS test
- Significant selectivity decline after test

Process Intensification - Effect of Permeability

> The permeability had a more prevalent effect on the adiabatic reactor H_2 recovery.

The adiabatic reactor could achieve high X_{CO} and R_{H2} only at low inlet flow rates due to admitting the feed at low temperature to protect the membrane.

 $(X_{CO} = 85\% \text{ and } R_{H_2} = 90\% \text{ at GHSV} = 1600h^{-1}).$

Isothermal MR performance surpasses the adiabatic MR for the current reaction conditions.

Process Intensification - Effect of Bulk Catalyst Density

Packing the reactor with less catalyst would not affect the production specifications and would reduce the cost.

$ ightarrow \downarrow ho_{Bulk} \Rightarrow Controlled T_F$	$_{\rm Rxn}$ rise 🟓 V $_{\rm effe}$	_{ctive} ir	ncrea	sed fi	rom 4	I0% t	o 80°	% of t	the V	total
	GHSV =3200h ⁻¹ Isothermal Adiaba							batic		
W _{Cat Max}	%ρ _{Bulk Max}	8		100		8%		100%		
$ \rho_{Bulk,max} = \frac{V_{Reactor}}{V_{Reactor}} $		PBR	MR	PBR	MR	PBR	MR	PBR	MR	
	X _{co} [%]	79.5	97	79.5	97	17.2	34	78.2	95.2	
	F _{H2} [scfh]	0.89	1.1	0.89	1.1	0.47	0.5	0.87	1.1	

¹⁶ Technical Accomplishments

Process Intensification – Model for the membranes with $\alpha_{\rm H_2/He} \neq \infty$

Process Control Regulator and Servo Mechanism Problems

The main objective of the <u>proportional integral controller</u> was to reduce the CO fractions at the reactor exit by manipulating the <u>inlet steam flow rate</u> to enhance the MR performance by <u>increasing the CO conversion</u>. (Assume $\alpha_{H_2/H_e} = \infty$)

Collaborations

Adsorption Research Inc. (ARI); sub

(Through telephone conversations and quarterly report to the prime)

- ARI completed adsorption selection & property measurement for Zeolite 5A, Zeolite 13X, NaY and Hisiv3000
- The equilibrium isotherms measurements & the transient uptake tests to evaluate both short-time and long-time diffusion behavior of the adsorbents 5A, 13X, NaY and Hisiv3000 were conducted at 200 and 230°C for CO₂, COS, H₂S and the water vapor.
- Completed the pressure swing adsorption (PSA) system and demonstrated the cyclic operation at 200°C & 200 psia with 5A to ensure the accuracy of the simulations.
- For a three-component mixture, showed a recovery of 99+% of helium when a recycle of the blow-down gas was used

Proposed Future Work (FY10 & FY11)

- Scaling-up to 1" & 2" OD Membranes
- Continue WGS reaction and mixed gas testing studies
- Complete 2010 technical target screening and qualification tests* phase 1 and phase 2
- Synthesis of thin separation layers to achieve higher H₂ flux using support with minimum mass transfer resistance
- > Continue Pd/Au alloying studies to improve H_2 flux
- > Conduct long-term sulfur poisoning & recovery experiments
- Further refinement & improvement of the CMR model
- Continue process intensification & performance assessment analyses coupled with process control strategies
- Initiate economical analysis for the proposed process intensification framework
- Complete testing of a Pressure Swing Adsorption (PSA) system (sub: ARI)

Project Summary

- > Achieved excellent long-term H₂/He selectivity stability of essentially infinite over a total testing period of ~3550 hours (>147 days) at 300-450°C & at a ∆P of 15-100 psi (P_{Low}=15 psia).
 - Conducted an additional ~3000 hours of mixed gas permeation testing (61.7% H₂, 37.1% CO₂ & 1.2% CO w/ and w/o 19% Steam) at 400°C & △P of 1-14 atm (P_{Low}=1 atm) that resulted in stable H₂ flux and minimal inhibition effects of steam, CO₂ and CO at T > 400°C & low total flow rates (≤ 5000 sccm).
- > At 450°C, the long-term H₂/He selectivity stability was successfully re-produced with several membranes with H₂ purity \geq 99.99% over a testing period of 30-90 days.
- > Flux of ~359 scfh/ft², which exceeded the DOE's 2010 and 2015 H₂ flux targets [T=442°C & ΔP of 100 psi (with P_{Low}=15 psia)].
- Reduced the number of synthesis steps for the large scale preparation for potential commercialization of WPI's composite Pd-based membrane production technologies.
- Completed mixed gas & WGS testing of composite Pd/Inconel membranes:
 - Effects of temperature dependent CO inhibition and gas boundary layer mass transfer resistance were isolated in mixed gas experiments.
 - 98% CO conversion and 81% H₂ recovery were achieved in a 18.1 µm thick Pd-based CMR operated at 450°C, ΔP=200 psi (P_{Low}=15 psia) and GHSV_{stp} = 2900 h⁻¹, with a CO and steam feed, exceeding the equilibrium conversion of 93%.
 - 95% CO conversion and 83% H₂ recovery were achieved for over 80 hours of WGS testing in a 13.1 µm thick Pd-based CMR operated at 450°C, ΔP=200 psi (P_{Low}=15 psia) and GHSV_{stp}= 4500 h⁻¹, with syngas feed, exceeding the equilibrium conversion of 76%.

Project Summary

Successfully completed steady-state MSR & WGS reaction modeling studies & process intensification analysis:

- Studied the effect of permeability in Adiabatic & Isothermal membrane reactor, Adiabatic feed temperature, catalyst loading and changes in CO conversion, and the effect of selectivity on H₂ purity and CO conversion by utilizing the Dusty Gas Model.
- Successfully completed unsteady-state WGS reaction modeling studies and implemented process control strategies:
 - Characterized the reactor's dynamic behavior via detailed simulation studies based on the lumped reactor model approximation & showed that the transient state ended in 10 seconds with X_{CO,lso} = 97% when the coal-derived syngas feed was used.
 - Model-based analysis of the automatically controlled MR was able to recover the disturbed system due to pressure drop from 220 to 147 psia in 20 seconds and kept X_{CO,Iso} at 97%. The CO fraction of 2% was reduced to 1% with the application of the servo mechanism controller.
 - The retentate stream consisted of mostly CO₂ and H₂ would be ready to be sequestered at high pressure after the energy value of the remaining H₂ is used.

Completed property & isotherm measurements for the selected adsorbents (Sub, ARI).
 Completed the PSA system construction and initiated PSA testing at 200°C and a feed pressure of 200 psia (with P_{low}=1 atm) (Sub, ARI).

Project Summary Table: Permeation Results

	DOE T	DE Targets§ Current WPI Membranes (1/2" OD, 2.5" Length, ~24 cm ²			Current WPI Membranes (1/2" OD, 2.5" Length, ~24 cm ²)					
	2010	2015	#025R	#027	#029	#030	#031	#032		
Flux [scfh/ft ²]	200	300	65.9	36.1	166	178	26.6	359		
∆P (psi) H ₂ partial pressure (P _{Low} =15 psia)	100*	100*	15	15	100	102	15	100		
Temperature [°C]	300-600	250-500	400	400	450	442	450	442		
H ₂ /He Selectivity	n/a	n/a	~220	~120	8	10000	~4500	~450		
Total Test Duration [hours]	n/a	n/a	1015	~1250	~4500	~1400	~2200	~523		
Thickness [µm]	n/a	n/a	4.2 Pd	6.2 Pd/Au _{5 wt%}	7.6 Pd	7.9 Pd	7.0 Pd	3-5 Pd		
WGS Activity	Yes	Yes	Not tested	Not tested	Not tested	Not tested	Not tested	Not tested		
CO Tolerance	Yes	Yes	Not tested	Not tested	Yes	Not tested	Not tested	Not tested		
S Tolerance [ppm]	20	>100	Not tested	Not tested	Not tested	Not tested	Not tested	Not tested		
H ₂ Purity	99.5%	99.99%	99.0%	99.5%	≥99.999%	≥99.99%	99.98%	99.8%		
∆P Operating Capability (Max. Sys. Pressure, psi)	400	800-1000	15**	15**	225**	102**	15**	100**		

§ DOE-NETL Test Protocol v7 - 05/10/2008, * Standard conditions are 150 psia hydrogen feed pressure and 50 psia hydrogen sweep pressure

23 ** Maximum pressure tested, however, the △P can be higher since previous WPI membranes were tested up to 600 psi under MSR reaction conditions

Project Summary Table: Mixed Gas & WGS Reaction Results

	DOE 1	argets§	Current	WPI Membrar	/PI Membranes (1/2" OD, 2.5" Length, \sim 24 cm ²)						
	2010	2015	AA-4R*	AA-5R*	AA-6R*	AA-7R*	AA-8R*				
Flux [scfh/ft ²]	200	300	262.3	108.6	427.0	98.1	96.4				
∆P (psi) H ₂ partial pressure (P _{Low} =15 psia)	100**	100**	245.1	71.0	222.7	45.4	37.1				
Temperature [°C]	300-600	250-500	400	450	450	450	450				
H ₂ /He Selectivity	n/a	n/a	71,000	2,800	1,100	25	670				
Total Test Duration [hours]	n/a	n/a	1,030	1,080	860	350	970				
Thickness [µm]	n/a	n/a	14.4	18.1	18.1	14.3	13.4				
WGS Activity	Yes	Yes	Not tested	w/ packed catalyst	Not tested	w/ packed catalyst	w/ packed catalyst				
CO Tolerance	Yes	Yes	Yes	Yes	Yes	Yes	Yes				
S Tolerance [ppm]	20	>100	Not tested	Not tested	Not tested	Not tested	Not tested				
H ₂ Purity	99.5%	99.99%	99.99%	99.96%	99.91%	96.2%	99.85%				
∆P Operating Capability (Max. System Pressure, psi)	400	800-1000	250	250	250	250	250				

§ DOE-NETL Test Protocol v7 - 05/10/2008

* R - repaired by mechanical treatment and Pd plating

** Standard conditions are 150 psia hydrogen feed pressure and 50 psia hydrogen sweep pressure

