

NATIONAL ENERGY TECHNOLOGY LABORATORY

Development of Robust Hydrogen Separation Membranes

Dr. Bryan D. Morreale Reaction Chemistry & Engineering Research Group Leader NETL Office of Research & Development

This presentation does not contain any proprietary, confidential, or otherwise restricted information

2010 DOE Hydrogen Program Review Project ID# PD008

Reaction Chemistry & Engineering Group Members

U.S. DOE - NETL

Dr. Bryan Morreale Dr. Bret Howard Dr. Dirk Link Dr. Charles Taylor

NETL Research Faculty

Dr. Andrew Gellman, CMU Dr. James Miller, CMU Casey O'Brien, CMU William Michalak, CMU Dr. Robert Enick, PITT Kate Barillas Dr. Goetz Vesser, PITT Dr. Sittichai Natesakhawat, PITT Dr. Nate Weiland, WVU

NETL Site Support Contractors

Dr. Fan Shi, URS Dr. Adefemi Egbebi, URS Dr. Mike Ciocco, URS Dr. Sonia Hammache, URS Dr. Brian Kail, URS Dr. Janice Panza, URS Paul Zandhuis, URS Nick Means, URS

Overview

Timeline

- Project start date: 10/1/2009
- Project end date: 9/30/2010
- Percent complete: 58%

Budget

- FY10 Funding: \$681
- FY09 Funding: \$746k
- FY08 Funding: \$1,000k
- FY07 Funding: \$1,230k

Barriers⁽¹⁾

- (G) H₂ Embrittlement
- (H) Thermal cycling
- (I) Poisoning of catalytic surface
- (J) Loss of structural integrity and performance

Partners

- Carnegie Mellon University
- University of Pittsburgh
- Gas Technology Institute
- Los Alamos National Lab.
- NETL Computational Chemistry

NATIONAL ENERGY TECHNOLOGY LABORATORY

⁽¹⁾ 2008 Hydrogen from Coal Program: Research, Development and Demonstration Plan

Background (Relevance)

Overall goal

- Development of robust hydrogen separation membranes for integration into coal conversion processes, including integrated WGSMR
- Studies suggest that incorporating separation membranes into coal conversion processes can reduce costs by 8%

Facilities & Capabilities

- 3 Membrane Test Rigs
 - Continuous, bench-scale units
 - T to 1000°C, P to 1000 psi
- 2 Laboratory Membrane Screening Rigs
 - Continuous, lab-scale units
 - T to 1000°C, P to 30 psi
- Materials Lab
 - Depositions chamber
 - Vacuum arc-melter
 - Micro-welder
 - High-T box and annealing ovens
 - XRD w/hot-stage
 - SEM w/EDS
 - TGA for use with H_2S
 - UHV analysis capabilities
- High Throughput Materials Science
 - Deposition tools
 - Spatially resolved characterization
- Computation
 - DFT, Kinetic Monte-Carlo, COMSOL CFD

Outline

Task 1: Performance testing of external membranes and the "NETL H₂ Membrane Test Protocol" Task 2: Robust Metal Membrane Development

- Objective
- Approach
- Technical Accomplishments
- Collaborations
- Proposed Future Work

Task 1: H₂ Membrane Test Protocol

Objective

- Define a H₂-membrane test protocol that
 - will advance the technology towards application to coal conversion processes
 - is consistent with overall FE program metrics, and
 - yields a basis for an "applesto-apples" comparison

Approach

 Apply understanding of engineering principles, membrane technology and coal conversion processes to define a sequential protocol

Performance Criteria	Units	2007 Target	2010 Target	2015 Target
Flux ^(a)	sccm/cm ²	51	102	152.4
Temperature	°C	400–700	300–600	250–500
S Tolerance	ppmv		20	>100
Cost	ft^2	150	100	<100
WGS Activity	-	Yes	Yes	Yes
ΔP Operating Capability ^(b)	psi	100	Up to 400	Up to 800 to 1,000
Carbon Monoxide Tolerance	-	Yes	Yes	Yes
Hydrogen Purity	%	95%	99.5%	99.99%
Stability/Durability	years	1	3	5

^a For 100 psi ΔP (hydrogen partial pressure basis)

^b ΔP = total pressure differential across the membrane reactor

Task 1: H₂ Membrane Test Protocol (Background)

•Completed a survey to determine the effluent composition of a WGS unit

•Developed COMSOL model to predict the influence of WGS reaction and/or H₂ removal on overall gas composition

•Identified the test conditions and gas compositions that are relevant to syngas conversion flowsheet options:

- <u>Test 1</u>: Shifted syngas, with no sulfur
- <u>Test 2a</u>: Shifted syngas with 20ppm H_2S
 - <u>Test 2b</u>: Shifted syngas with ~50% H removal
- <u>Test 2c</u>:
- ~50% H₂ removal Shifted syngas with ~90% H₂ removal

Task 1: H₂ Membrane Test Protocol (Technical Accomplishments)

Infrastructure

- Moved the membrane test units to new location
- Modified membrane units to accommodate the "test protocol"
- Flow ranges and membranes to test
 - Conducted detailed analysis of the flow requirements to test a variety of membranes being developed
 - Disks, tubes
 - Performing at 2015 targets

Task 1: H₂ Membrane Test Protocol (Collaborations)

NETL Technology Manager and Technology Team

 The development of the test protocol was a team effort consisting of several participants of the Technology Team

NETL funded H₂ Separation Projects

- Provide unbiased performance verification testing
 - REB Research
 - ORNL
 - Eltron Research
 - WRI

Task 1: H₂ Membrane Test Protocol (Proposed Future Work)

- Continue to support the development of test protocols to include more "commercially relevant" conditions
 - Higher transmembrane pressure differentials
 - Contaminants other than H₂S
 - For example, CI- and N-compounds for biomass co-feed
 - Integration of WGS reactor and Membrane separator

Task 2: Robust Metal Membrane Development

Identify membrane compositions and configurations that meet the criteria outlined in FE H₂ from Coal RD&D plan per the NETL Membrane Test Protocol

Provide design guidance to collaborators who will fabricate membranes at commercial scales and thicknesses

Performance Criteria	Units	2007 Target	2010 Target	2015 Target
Flux ^(a)	sccm/cm ²	51	102	152.4
Temperature	°C	400–700	300–600	250–500
S Tolerance	ppmv		20	>100
Cost	\$/ft ²	150	100	<100
WGS Activity	-	Yes	Yes	Yes
ΔP Operating Capability ^(b)	psi	100	Up to 400	Up to 800 to 1,000
Carbon Monoxide Tolerance	-	Yes	Yes	Yes
Hydrogen Purity	%	95%	99.5%	99.99%
Stability/Durability	years	1	3	5

^a For 100 psi ΔP (hydrogen partial pressure basis)

^b ΔP = total pressure differential across the membrane reactor

Task 2: Robust Metal Membrane Development (Background)

Corrosive decay

- "turns on" slowly
- Associated with formation of Pd₄S scale
 - $\textbf{4Pd} + \textbf{H}_2\textbf{S} \rightarrow \textbf{Pd}_4\textbf{S} + \textbf{H}_2$
- Flux never = 0

13

Task 2: Robust Metal Membrane Development (Background)

Catalytic poisoning

- Immediate
- Usually partially reversible
- No bulk Pd-S compound formation
- Characteristic of alloy at low temperatures

NATIONAL ENERGY TECHNOLOGY LABORATORY

Task 2: Robust Metal Membrane Development (Approach)

- Develop a multi-layered membrane system that utilizes the catalytic activity shown with Pd₄S and the corrosion resistance of select PdCu alloys
- Use computational and experimental techniques to understand the
 - catalytic activity at the gas-scale interface
 - Pd, Cu, Mo, Fe, Ni, Co, etc.
 - Hydrogen transport properties of the layers and interfaces
 - stability and growth scale

Task 2: Robust Metal Membrane Development

(Technical Accomplishments – Catalytic Activity, Gas-Scale Interface)

Surface Stability

- Pd-terminated surfaces are least stable
- S-Pd-terminated surfaces are most stable

Catalytic Activity

- Incorporation of S into the Pd system decreases catalytic activity
- Pd-participation in the surface reaction allows rates high enough to meet DOE targets
 - Pd-terminated

16

Sub-surface Pd

Task 2: Robust Metal Membrane Development (Technical Accomplishments – Catalytic Activity, Gas-Scale Interface)

HD-Exchange

Experiments

- Modified quartz reactor system
- Developed kinetic model
- Initiated
 experimentation on Pd,
 Cu and 80Pd-Cu
 - The 80Pd-Cu system is "more catalytic" than pure Pd in H₂

Task 2: Robust Metal Membrane Development (Technical Accomplishments – Stability, Scale Growth & Transport)

Synthesized multilayered membranes

- Continuous and dispersed overlayers
- 25µm PdCu substrate (corrosion resistance)

Mo nano particles, spin coated

	1 ML	1 nm	10 nm	100 nm	1 µm
Co	$Pd_{13}Cu_3S_7$ + Cu_2S	$Pd_{13}Cu_3S_7$ + Cu_2S		Co ₉ S ₈	
Cr	$Pd_{13}Cu_3S_7$ + Cu_2S		no "thick" sulfides	no "thick" sulfides	
Fe	$Pd_{13}Cu_3S_7$ + Cu_2S			Fe-sulfide (spalled)	
Мо	$Pd_{13}Cu_3S_7$ + Cu_2S	$Pd_{13}Cu_3S_7$ + Cu_2S			
Ni	$Pd_{13}Cu_3S_7$ + Cu_2S			Ni-sulfide	
Pd		$Pd_{13}Cu_3S_7$ + Cu_2S	$Pd_{13}Cu_3S_7$ + Cu_2S	$Pd_{13}Cu_3S_7$ + Cu_2S	Pd₄S
Pt	$Pd_{13}Cu_3S_7 + Cu_2S$				

Task 2: Robust Metal Membrane Development (Technical Accomplishments – Stability, Scale Growth & Transport)

Synthesized multilayered membranes

- Mono-layer Mo film
- Expected performance in H₂
- H₂S catalyzed the corrosion of PdCu substrate

 $Pd_{13}Cu_3S_7 Cu_2S$

Task 2: Robust Metal Membrane Development (Technical Accomplishments – Stability, Scale Growth & Transport)

- Directly measured the permeability of Pd₄S
 - In the presence of H₂, appears to follow Sievert's law
 - Permeability of Pd₄S is ~10x less than Pd
 - and consistent with fcc-phase 60Pd-Cu

Task 2: Robust Metal Membrane Development (Collaborations)

- The research team conducting the work on the task consisted of participants from
 - Carnegie Mellon University
 - NETL Reaction Chemistry & Engineering Group
 - NETL Computational Research Group
 - Dominic Alfonso

Task 2: Robust Metal Membrane Development

(Proposed Future Work)

Identify membrane compositions and configurations that meet the criteria outlined in FE H₂ from Coal RD&D plan per the NETL Membrane Test Protocol

- Catalytic activity
 - Utilize computational and experimental approaches to screen the H₂-dissociation properties of potential membrane surfaces (metals, oxides, sulfides, carbides, glasses)
 - · High-activity, thermally stable and corrosion resistant
 - High-throughput methodologies that can measure properties over the entire composition spectrum of up to 4-components
- Hydrogen transport properties
 - Utilize computational and experimental approaches to quantify the permeability of base materials and scales that form during operation
 - High permeability, high mechanical strength
- Scale growth and stability
 - Quantify the scale growth of corrosion products, and stability of membrane overlayers at relevant conditions
- Membrane fabrication
 - Utilize the observations above to synthesize membranes for characterization per the NETL Test Protocol

Multi-layer Membrane Concept

Summary

- A test protocol has been developed and NETL's test systems have been modified to allow testing of various membrane geometries and performance levels
- Evaluation of the catalytic activity of potential membrane catalyst layers has been initiated utilizing DFT, kinetic Monet Carlo and H₂-D₂ exchange
 - In the presence of H_2 , 80Pd-Cu appears more catalytic than Pd
 - Pd₄S shows catalytic properties for H₂ dissociation
- Several multi-layered membrane systems have been fabricated using both continuous and dispersed catalysts
 - Thin catalyst layers appear to catalyze the corrosion of a corrosion resistance PdCu alloy
- The characterization of sulfide permeability has been initiated.
 - Pd4S is approximately 10x lower than pure Pd.

