Scale-Up of Hydrogen Transport Membranes for IGCC and FutureGen Plants

Carl Evenson Eltron Research & Development Inc. June 8, 2010

PD009

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Phase I Start Oct. 1, 2005
- Phase II Start Oct. 1, 2009
- Phase II End June 2012
- ~70% Complete

Budget

- Total project funding: \$7,915,802
 - DOE Share: \$6,332,642
 - Contractor Share: \$1,583,160
- FY09 funding: \$1,875,000
- FY10 funding: \$2,500,000

Barriers Addressed

- Reducing hydrogen cost
- Membrane durability
- Membrane testing & analysis

Partners

- Project Lead: Eltron R&D
- Partners: Eastman Chemical Co.

Relevance

Overall Program Objectives

- Cost-effective H₂ / CO₂ separation system
- Retains CO₂ at gasifier pressures
- Operates near water-gas shift conditions
- Tolerates reasonably achievable levels of coal impurities
- Objectives June 2009 May 2010
- Membrane manufacturing Scale-up
- Lifetime testing
- Impurity testing
- Design of 12 lbs/day membrane reactor

Technical Approach

- Materials Development
 - Examine membrane and catalyst compositions
 - Develop preparation techniques
- Performance Screening
 - Evaluate flux, life, impurities effects using WGS composition
 - Establish range of operating conditions
- Mechanical Design
 - Assess strength of materials, embrittlement, welding techniques, flow dynamics
 - Address manufacturing costs and maintenance issues
- Process Design and Economics
 - Integrate into IGCC flow sheets with and without co-production of $\rm H_2$ & power
 - Determine methods for impurity management
 - Compare process economics versus other technologies
- Scale-up steps
 - 12 lbs/day H₂ production coal-based syngas slipstream
 - 250 lbs/day H₂ production coal-based syngas slipstream + WGCU

Approach - Milestones

	Milestone
FY09 Q3	Procure membrane materials prepared by different manufacturers and processes for testing and evaluation Status: Completed
FY09 Q4	Select the preferred manufacturing process and catalyst deposition technique for scale-up in PDU. Status: Completed
FY10 Q1	Collect lifetime data on a 6" tubular membrane with electrodeposited catalysts. Status: Completed
FY10 Q2	Deposit catalyst on a five foot long tubular membrane. Status: Completed
FY10 Q3	Complete membrane module design and skid layout. Status: In Progress
FY10 Q4	Complete construction of 12 lbs/day unit. Status: In Progress

- Membrane Manufacturing
 - 100 feet
 membrane
 tubing
 - ½" OD
 - 500 μm wall
 - Catalyst
 deposited on
 the inside &
 outside of a 5'
 tube

- Lifetime Testing –
 Planar Membrane #1
 - NETL Protocol 1
 - 2.5 SLPM (50%
 H₂, 1% CO, 29%
 CO₂, 19% H₂O,
 1% He)
 - 340°C
 - 185 psig feed /
 15 psig sweep
- Key Issues
 - Stability of H₂
 flux
 - Mass transfer resistance

- Lifetime Testing Planar Membrane #2
 - 2.5 SLPM (50%)
 H₂, 1% CO,
 29% CO₂, 19%
 H₂O, 1% He)
 - 340°C
 - 450 psig feed / 50 psig sweep
- Key Issue
 - Effect of pressure on membrane stability

- Lifetime Testing 6" Tubular Membrane
 - 3.7 SLPM (50%
 H₂, 1% CO, 29%
 CO₂, 19% H₂O,
 1% He)
 - 340°C
 - 100 psig Feed
 - 45% H₂
 Recovery
- Key Issues
 - Mass transfer resistance
 - High feed flow rates needed

- Impurity Testing
 - Eltron membranes were exposed to gasified coal syn-gas that was passed through a ZnO sorbent bed
 - 168 hours
 - 340°C
 - 700 psig
 - < 5 ppm H_2S (>35 ppm for ~ 30 minutes)
 - Following exposure membranes were characterized and tested for H₂ flux performance

- H₂ flux testing following exposure
 - 3.8 SLPM (50% H₂, 50% He)
 - 340°C
 - 300 psig feed
- Key Issues
 - Flux drop after exposure to be expected
 - As, Hg, S found on membrane surface

12 lbs/day H₂ Membrane Reactor

- Design Specification
 - 10' of ¹/₂" OD tubular membrane
 - 450-900 psig feed pressure
 - 300 SCFH coal-derived syn-gas
 - 95% H₂ recovery
- Progress
 - Preliminary Design
 - Preliminary Process Hazards Analysis
 - Detailed Design & Final Approval
 - Construction & Installation (FY10 Q4)
 - Operation (FY11 Q1)

Collaborations

- Eltron Research & Development Inc.
 - Prime Contractor
- Eastman Chemical Co.
 - Subcontractor
 - Gasified coal slip-stream
 - WGCU
- Edison Welding Institute
- Membrane Manufacturers

Future Work

- FY2010 Q3 FY2011 Q1
 - Design, build, operate 12 lbs/day H₂ Unit
 - Go / No-Go Decision
- FY2011 Q2 FY2011 Q3
 - Preliminary Design 250 lbs/day H₂ Unit
 - Go / No-Go Decision
- FY2011 Q4 FY2012 Q3
 - Design, build, operate 250 lbs/day H₂ Unit integrated with WGCU

Summary

- Relevance
 - Cost-effective H_2 / CO₂ separation system
- Approach
 - Demonstrate performance and economics on gasified coal feed streams
- Technical Accomplishments
 - Tubular membrane manufacturing was successfully scaled up
 - Lifetime & impurity testing
- Collaborations
 - New partnership with Eastman Chemical Co.
- Future Work
 - Scale-up testing on gasified coal feed stream
 - 12 lbs/day H₂ membrane unit
 - 250 lbs/day H₂ membrane unit

Supplemental Slides

Eltron's Membrane System

