

Hydrogen Delivery

Monterey Gardiner

2010 Annual Merit Review and Peer Evaluation Meeting (8 June 2010)

Goal and Objectives

MI

<u>Goal</u>: Develop technologies to deliver hydrogen at reduced cost.

Current Target of \$1/gge or ~kg under evaluation.

Near-term:

Longer-term:

- Tanker trucks (liquid)
- Tube Trailers (gas)

- Pipelines
- Tanker trucks (liquid)
- Tube Trailers (gas)

In the United States, about 9 million tons of hydrogen are produced annually for industrial purposes, and there are about 1,200 miles of hydrogen pipelines.

Budget

FY 2010 Appropriation = \$4.5 M

FY 2011 Appropriation = \$7.2 M

EMPHASIS

- Reducing compression cost
 - Centrifugal compression system design using "off the shelf parts"
 - High RPM system to reduce size and cost while increasing efficiency
 - High pressure/temperature test bed to develop coatings and materials
 - Electrochemical SBIR
- Higher capacity truck delivery
 - Large volume/high pressure gas
 - High pressure, low temperature using glass fibers
- Advanced liquefaction
 - Leveraging Ortho-Para conversion
 - Helium cycle with novel heat exchanger configuration
 - Solid state cooling
- > Analysis
 - Refine 700 bar and cryocompressed cost
 - Evaluating pathways and largest cost contributors
 - Evaluating purification costs

The **key challenge** is to reduce cost of H₂ (delivered, dispensed & untaxed)

Project Category	Goal (Targets to be met by 2020)	Status*
Tube Trailers	Reach H ₂ delivery cost target of \$1/gge Reduce capital cost to <\$200,000 Increase capacity to 1100 kg through the use of carbon fiber or low-cost glass fiber	\$2.85-\$3.15/gge (high volume demand projection Completed system design for 1100 kg capacity with glass fibers and small scale prototype development Completed testing of carbon fiber tank with a capacity of 600 kg
Pipelines	Reach H ₂ delivery cost target of \$1/gge Decrease cost/mile to <\$490K	\$2.20-\$2.35/gge (high volume demand projection) Cost/mile (steel): \$1M/mile; cost/mile (FRP): \$600K/mile
Liquefaction	Reach H ₂ delivery cost target of \$1/gge Decrease installed capital cost to \$100M Increase energy efficiency to 87%	\$2.70 - \$2.90 (high volume demand projection) Installed capital cost: \$170M Energy efficiency: 40%
Compression	Reduce capital cost to \$6.2M (transmission compression) Increase energy efficiency to >98% Cost contribution: \$0.25/kg H ₂	Centrifugal pipeline package cost: \$4.5M (projected) Energy efficiency: 98% (projected) Cost contribution: \$0.60/kg H ₂
Bulk Storage	Reduce cost of storage tank to \$300/kg H ₂ stored Increase volumetric capacity to >0.035 kg H ₂ /liter of storage volume	Storage tank cost: \$820/kg H ₂ stored Volumetric capacity: 0.025 kg H ₂ /liter of storage volume
Carriers	Show a viable carrier material (liquid, non-toxic) Decrease delivery cost contribution to $<$ 1/gge Increase carrier H ₂ content to 13.2% by weight	N-ethylcarbazole delivery cost: \$4.75 N-ethylcarbazole H ₂ content by weight: 5.8%

*DOE estimates—not publicly vetted

4

Challenges

Major Challenges of Delivery Pathways

- **Tube Trailers**
 - Tube Trailer capacity
 - Capital cost
 - Regulatory issues
- **Pipelines** ٠
 - Managing Embrittlement (steel pipelines) to reduce material and costs
 - Capital and labor cost (automated welding and inspection)
 - New materials—fiber reinforced pipe
 - Hydrogen quality
- Liquid Hydrogen via Truck ٠
 - Energy intensity of liquefaction
 - Boil off
 - Modularity, and Capital cost

Compression

Analysis

Pipelines

Liquefaction

Trailers

Tube

Dispensers

Tube Trailers (Gaseous Hydrogen)

2009 Modeled High-Volume Hydrogen Delivery Cost: \$2.85 – \$3.15/gge (preliminary estimate)

<u>Recent Progress</u> (Lincoln Composites and Livermore National Laboratory):

- Higher capacity with carbon fiber
 Doubled capacity to 600 kg H₂
 - Demonstrated large scale dome molding, tubular welding, and filament winding of tanks
- Trailer with glass fibers
 - Demonstrated stronger glass fibers at lower temperatures to project reduced delivery tank costs
 - Identified pathway to triple capacity : 1,100 kg H₂
 - Potential for up to 50% trailer cost reduction

Future Work:

- High performance glass fiber composite pressure vessels
- High pressure hydrogen tank for storage and gaseous truck delivery
- CF testing and failure analysis
- Integrated alloy/concrete vessel design and fabrication for low-cost storage at the station

Pipelines (Gaseous Hydrogen)

2009 Modeled High-Volume Hydrogen Delivery Cost: \$2.20 – \$2.35/gge (preliminary estimate)

Projected Pipeline Cost: FRP: \$600k/mile; Steel: \$1M/mile

Recent Progress:

- No degradation after eight months of accelerated-aging (equal to five years at room temperature)
- Hydrogen compatibility testing with commercial FRP pipeline specimens
- FRP passed blow-down testing
- Predicted leakage rate < 0.02% per year, surpassing target of 0.5% per year
- Measured leakage rate ≅ 0.5 kg H₂/yr/joint

Future Work:

- Address steel embrittlement issues
- FRP: on-site manufacturing and increased automation
- H₂ permeability and integrity of pipelines

Liquid Hydrogen via Truck

2009 Modeled High-Volume Hydrogen Delivery Cost: \$2.70 – \$2.90/gge (preliminary estimate)

Recent Progress Praxair and Heracles:

- Ortho-Para Approach to Liquefaction
 - Created computer model to determine ortho-para energy reduction potential
 - Developed test bed to validate model results
- Active Magnetic Regenerative Liquefier
 - Constructing lab prototype for cooling from 290 K to 120 K (LN₂)
 - Demonstration and independent verification planned third quarter

Future Work:

- Increasing efficiency (Active Magnetic Regenerative Liquefier and advanced processes)
- Cryo-pump testing
- Reduced boil-off
- Improved insulation

Analysis Updates Fuel Stations Account for >Half Cost of GH₂ Delivery

- Installed capital of equivalent capacity H₂ stations ranges from \$750k to \$1.8 million.
- With no refrigeration and cascade and less storage, CcH₂ stations shift costs upstream.
- Installed capital for CcH₂ station is ~40% of 700-bar station: levelized H₂ cost is ~50%.
- LH₂ storage > 50% CcH₂ installed capital cost.
- 700-bar GH₂ with high pressure cascade is less expensive than booster-compressed 700bar option (not shown).
- 500-bar cold gas station costs ~\$0.50/kg >CcH₂ station dispensing of vaporized LH₂ (and ~\$0.50/kg > 700-bar. GH₂ with cascade charging).
- Station cost for 500-bar cold GH₂ and 350bar GH₂ ~\$1.40/kg.
- But 500-bar cold GH₂ provides > energy density and longer driving range.
- All cost s are levelized 2005 \$ for delivery only.

ANL: A. Elogwainy, M. Mintz

U.S. DEPARTMENT OF

Compression Technology

Projected 2009 Centrifugal Pipeline Compression Footprint Cost: \$4.5 m (versus DOE target: \$6.2 m)

Recent Progress:

- Centrifugal Compression
 - Completed design criteria and performance specifications
 - Designed and began assembling a hydrogen centrifugal compressor using "off-the-shelf" parts

Future Work:

- Increase efficiency
- Reduce maintenance needs
- Centrifugal compression
- Ionic compression

Progress Towards Meeting Technical Targets for Delivery of Hydrogen via Centrifugal Pipeline Compression*

Characteristic	DOE Target	Projection		
Hydrogen Efficiency (btu/btu)	98%	98%		
Hydrogen Capacity (kg/day)	100,000 to 1,000,000	240,000		
Hydrogen Leakage (%)	<0.5	0.2		
Hydrogen Purity (%)	99.99	99.99		
Discharge Pressure (psig)	>1000	1285		
Component Package Cost (\$M)	6.2	4.5		
Main Cost (\$/kWh)	0.007	0.005		
Package Size (sq. ft.)	300 to 350	175 to 200		
Reliability (# systems required)	Eliminate redundant system	Modular systems with 240,000 kg/day with no redundancy required		

Design projected to meet or exceed key targets

- This is a review, not a conference.
- Presentations will begin precisely at the scheduled times.
- Talks will be 20 minutes and Q&A 10 minutes.
- Reviewers have priority for questions over the general audience.
- Reviewers should be seated in front of the room for convenient access by the microphone attendants during the Q&A.
- Please mute all cell phones, BlackBerries, etc.

- Deadline for final review form submittal is <u>June</u>
 <u>18th</u>.
- ORISE personnel are available on-site for assistance. A reviewer ready room is set-up in room 8216 and will be open Tuesday –Thursday from 7:30 AM to 6:00 PM and Friday 7:30 Am to 3:00 PM.
- Reviewer feedback session Thursday, at 5:45pm (after last Hydrogen Production and Delivery session), in this room.

For More Information

Hydrogen DeliveryTeam

Sara Dillich (EE) (202) 586-7925 sara.dillich@ee.doe.gov Monterey Gardiner(EE) (202) 586-7260 roxanne.garland@ee.doe.gov

Eric Miller (EE - IPA from U. of HI) (202) 586-7260 eric.miller@ee.doe.gov

Field Office Project Officers:

Paul Bakke, GO

Katie Randolph, GO

Support:

Samantha Jacoby (Energetics, Inc.)