U.S. DEPARTMENT OF

Hydrogen Delivery

Monterey Gardiner

2010 Annual Merit Review and Peer Evaluation Meeting
(8 June 2010)

Goal and Objectives

Goal: Develop technologies to deliver hydrogen at reduced cost.
Current Target of \$1/gge or $\sim k g$ under evaluation.

Budgeł

FY 2010 Appropriation = \$4.5 M
 FY 2011 Appropriation = \$7.2 M

EMPHASIS

> Reducing compression cost

- Centrifugal compression system design using "off the shelf parts"
- High RPM system to reduce size and cost while increasing efficiency
- High pressure/temperature test bed to develop coatings and materials
- Electrochemical-SBIR
$>$ Higher capacity truck delivery
- Large volume/high pressure gas
- High pressure, low temperature using glass fibers
> Advanced liquefaction
- Leveraging Ortho-Para conversion
- Helium cycle with novel heat exchanger configuration
- Solid state cooling
> Analysis
- Refine 700 bar and cryocompressed cost
- Evaluating pathways and largest cost contributors
- Evaluating purification costs

Challenges

The Ley challenge is to reduce cost of H_{2} (delivered, dispensed \& untaxed)

Project Category	Goal (Targets to be met by 2020)	Status*
Tube Trailers	Reach H_{2} delivery cost target of $\$ 1 /$ gge Reduce capital cost to $<\$ 200,000$ Increase capacity to 1100 kg through the use of carbon fiber or low-cost glass fiber	\$2.85-\$3.15/gge (high volume demand projection Completed system design for 1100 kg capacity with glass fibers and small scale prototype development Completed testing of carbon fiber tank with a capacity of 600 kg
Pipelines	Reach H_{2} delivery cost target of $\$ 1 /$ gge Decrease cost/mile to <\$490K	\$2.20-\$2.35/gge (high volume demand projection) Cost/mile (steel): \$1M/mile; cost/mile (FRP): \$600K/mile
Liquefaction	Reach H_{2} delivery cost target of $\$ 1 /$ gge Decrease installed capital cost to $\$ 100 \mathrm{M}$ Increase energy efficiency to 87\%	\$2.70-\$2.90 (high volume demand projection) Installed capital cost: \$170M Energy efficiency: 40\%
Compression	Reduce capital cost to $\$ 6.2 \mathrm{M}$ (transmission compression) Increase energy efficiency to $>98 \%$ Cost contribution: $\$ 0.25 / \mathrm{kg} \mathrm{H}_{2}$	Centrifugal pipeline package cost: $\$ 4.5 \mathrm{M}$ (projected) Energy efficiency: 98\% (projected) Cost contribution: $\$ 0.60 / \mathrm{kg} \mathrm{H}_{2}$
Bulk Storage	Reduce cost of storage tank to $\$ 300 / \mathrm{kg} \mathrm{H}_{2}$ stored Increase volumetric capacity to $>0.035 \mathrm{~kg} \mathrm{H}_{2}$ /liter of storage volume	Storage tank cost: $\$ 820 / \mathrm{kg} \mathrm{H}_{2}$ stored Volumetric capacity: $0.025 \mathrm{~kg} \mathrm{H}_{2} /$ liter of storage volume
Carriers	Show a viable carrier material (liquid, non-toxic) Decrease delivery cost contribution to < \$1/gge Increase carrier H_{2} content to 13.2% by weight	N-ethylcarbazole delivery cost: \$4.75 N -ethylcarbazole H_{2} content by weight: 5.8%

Challenges

Major Challenges of Delivery Pathways

- Tube Trailers
- Tube Trailer capacity
- Capital cost
- Regulatory issues
- Pipelines
- Managing Embrittlement (steel pipelines) to reduce material and costs
- Capital and labor cost (automated welding and inspection)
- New materials-fiber reinforced pipe
- Hydrogen quality
- Liquid Hydrogen via Truck
- Energy intensity of liquefaction
- Boil off
- Modularity, and Capital cost

2010 Progress \& Accomplishments

Tube Trailers (Gaseous Hydrogen)

2009 Modeled High-Volume Hydrogen Delivery Cost: \$2.85 - \$3.15/gge (preliminary estimate)
Recent Progress (Lincoln Composites and Livermore National Laboratory):

- Higher capacity with carbon fiber Doubled capacity to $600 \mathrm{~kg} \mathrm{H}_{2}$
- Demonstrated large scale dome molding, tubular welding, and filament winding of tanks
- Trailer with glass fibers
- Demonstrated stronger glass fibers at lower temperatures to project reduced delivery tank costs
- Identified pathway to triple capacity: 1,100 kg H2
- Potential for up to 50\% trailer cost reduction

Future Work:

- High performance glass fiber composite pressure vessels
- High pressure hydrogen tank for storage and gaseous truck delivery
- CF testing and failure analysis
- Integrated alloy/concrete vessel design and fabrication for low-cost storage at the station

2010 Progress \& Accomplishments

Pipelines (Gaseous Hydrogen)

2009 Modeled High-Volume Hydrogen Delivery Cost: $\$ 2.20$ - \$2.35/gge (preliminary estimate) Projected Pipeline Cost: FRP: \$600k/mile; Steel: \$1M/mile

Recent Progress:

- No degradation after eight months of accelerated-aging (equal to five years at room temperature)
- Hydrogen compatibility testing with commercial FRP pipeline specimens
- FRP passed blow-down testing
- Predicted leakage rate < 0.02\% per year, surpassing target of 0.5% per year
- Measured leakage rate $\cong 0.5 \mathrm{~kg}$ $\mathrm{H}_{2} / \mathrm{yr} / \mathrm{joint}$

Future Work:

- Address steel embrittlement issues
- FRP: on-site manufacturing and increased automation
- H_{2} permeability and integrity of pipelines

2010 Progress \& Accomplishments

Liquid Hydrogen via Truck

2009 Modeled High-Volume Hydrogen Delivery Cost: $\$ 2.70$ - \$2.90/gge (preliminary estimate)

Recent Progress Praxair and Heracles:

- Ortho-Para Approach to Liquefaction
- Created computer model to determine ortho-para energy reduction potential
- Developed test bed to validate model results
- Active Magnetic Regenerative Liquefier
- Constructing lab prototype for cooling from 290 K to $120 \mathrm{~K}\left(\mathrm{LN}_{2}\right)$
- Demonstration and independent verification planned third quarter

Future Work:

- Increasing efficiency (Active Magnetic Regenerative Liquefier and advanced processes)
- Cryo-pump testing
- Reduced boil-off
- Improved insulation

2010 Progress \& Accomplishments

Analysis Updates

 Fuel Stations Account for >Half Cost of GH_{2} Delivery

- Installed capital of equivalent capacity H_{2} stations ranges from $\$ 750 \mathrm{k}$ to $\$ 1.8$ million.
- With no refrigeration and cascade and less storage, CcH_{2} stations shift costs upstream.
- Installed capital for CcH_{2} station is $\sim 40 \%$ of 700-bar station: levelized H_{2} cost is $\sim 50 \%$.
- LH_{2} storage $>50 \% \mathrm{CcH}_{2}$ installed capital cost.
- 700-bar GH_{2} with high pressure cascade is less expensive than booster-compressed 700bar option (not shown).
- 500-bar cold gas station costs $\sim \$ 0.50 / \mathrm{kg}$ $>\mathrm{CcH}_{2}$ station dispensing of vaporized LH_{2} (and $\sim \$ 0.50 / \mathrm{kg}>700$-bar. GH_{2} with cascade charging).
- Station cost for 500-bar cold GH_{2} and 350bar $\mathrm{GH}_{2} \sim \$ 1.40 / \mathrm{kg}$.
- But 500-bar cold GH_{2} provides > energy density and longer driving range.
- All cost s are levelized 2005 \$ for delivery only.

ANL: A. Elogwainy, M. Mintz

2010 Progress \& Accomplishments

Compression Technology

Projected 2009 Centrifugal Pipeline Compression Footprint Cost: $\$ 4.5 \mathrm{~m}$ (versus DOE target: $\$ 6.2 \mathrm{~m}$)

Recent Progress:

- Centrifugal Compression
- Completed design criteria and performance specifications
- Designed and began assembling a hydrogen centrifugal compressor using "off-the-shelf" parts

Future Work:

- Increase efficiency
- Reduce maintenance needs
- Centrifugal compression
- Ionic compression

Progress Towards Meeting Technical Targets for Delivery of Hydrogen via Centrifugal
Pipeline Compression*

Characteristic	DOE Target	Projection
Hydrogen Efficiency (btu/btu)	98%	98%
Hydrogen Capacity (kg/day)	100,000 to 1,000,000	240,000
Hydrogen Leakage (\%)	<0.5	0.2
Hydrogen Purity (\%)	99.99	99.99
Discharge Pressure (psig)	>1000	1285
Component Package Cost (\$M)	6.2	4.5
Main Cost (\$/kWh)	0.007	0.005
Package Size (sq. ft.)	300 to 350	175 to 200
Reliability (\# systems required)	Eliminate redundant system	Modular systems with 240,000 kg/day with no redundancy required

Design projected to meet or exceed key targets

- This is a review, not a conference.
- Presentations will begin precisely at the scheduled times.
- Talks will be 20 minutes and Q\&A 10 minutes.
- Reviewers have priority for questions over the general audience.
- Reviewers should be seated in front of the room for convenient access by the microphone attendants during the Q\&A.
- Please mute all cell phones, BlackBerries, etc.
- Deadline for final review form submittal is June 18th.
- ORISE personnel are available on-site for assistance. A reviewer ready room is set-up in room 8216 and will be open Tuesday -Thursday from 7:30 AM to 6:00 PM and Friday 7:30 Am to 3:00 PM.
- Reviewer feedback session - Thursday, at 5:45pm (after last Hydrogen Production and Delivery session), in this room.

For More Information

Hydrogen Delferyieam

Sara Dillich (EE)

(202) 586-7925
sara.dillich@ee.doe.gov

```
Monterey Gardiner(EE)
(202) 586-7260
roxanne.garland@ee.doe.gov
```


Eric Miller (EE - IPA from U. of HI) (202) 586-7260
 eric.miller@ee.doe.gov

Field Office Project Officers:
Paul Bakke, GO
Katie Randolph, GO
Support:
Samantha Jacoby (Energetics, Inc.)

