Experimental Demonstration of Advanced Palladium Membrane Separators for Central High-Purity Hydrogen Production

S. Emerson, J.T. Costello, Z. Dardas, D. Goberman, T. Hale, R. Hebert, N. Magdefrau, G. Marigliani, S. Opalka, Y. She, C. Thibaud-Erkey, T. Vanderspurt, & R. Willigan United Technologies Research Center 8 June 2010 Project ID #PD011

Overview & Objectives (Relevance)

Timeline

- 6/15/07 to 6/30/10
- 97% complete

Budget

- \$2571k (\$2057k from DOE)
- FY09 funding: \$1024k
- FY10 funding: \$0k

Partners

- Power+Energy
 - Membrane separator fabrication
- Metal Hydride Technologies
 - H₂ solubility measurements
- Pall Corporation
 - Support tube development

Barriers

- K. Durability
- L. Impurities
- N. Hydrogen Selectivity
- P. Flux

Objectives

- Confirm the high stability and resistance of a PdCu trimetallic alloy to carbon and carbide formation and, in addition, resistance to sulfur, halides, and ammonia
- Develop a sulfur, halide, and ammonia resistant alloy membrane with a projected hydrogen permeance of 25 m³m⁻²atm^{-0.5}h⁻¹ at 400 °C and capable of operating at pressures of 12.1 MPa (~120 atm, 1750 psia)
- Construct and experimentally validate the performance of 0.1 kg/day H₂ PdCu trimetallic alloy membrane separators at feed pressures of 2 MPa (290 psia) in the presence of H₂S, NH₃, and HCI

DE-FC26-07NT43055 Project Status Scorecard

Dense metallic membranes can meet most DOE targets

Metric	2010 DOE Target	Current Project Status	Notes		
Hydrogen Flux	200 ft ³ ft ⁻² h ⁻¹	61 ft ³ ft ⁻² h ⁻¹ (P+E alloy) 45 ft ³ ft ⁻² h ⁻¹ (P+E alloy)	 P+E alloy at 600 °C; 100 psig H₂ P+E alloy at 450 °C; 200 psia H₂ 		
Temperature	300–600 C	350–600 C	 UTRC ternary alloy limited to 475 °C 		
Sulfur tolerance	20 ppmv	78 ppmv H₂S (P+E alloy) 9 ppmv NH ₃ (P+E alloy)	 Demonstrated with P+E alloy at 450 °C Demonstrated 487±4 ppmv for 4 hours Demonstrated 9 ppmv NH₃ for 175 hours 		
∆P operating capability	Up to 400 psi ΔP	200 psig	 Current tube thicknesses limited to ≈200 psia 		
CO tolerance	Yes	Yes	 Demonstrated up to 13.3% CO at 90 psia total pressure; >9% CO at 304.7 psia 		
Hydrogen purity	99.5%	99.9999%	 P+E manufacturing design and manufacturing ensures no leaks CO < 1 ppm, S < 15 ppbv desired for fuel cell applications 		

Milestone Schedule (Approach)

Project is on track to meet milestones; effort focused on Tasks 3 & 5

Task #	Project Milestone	Planned Start Date	Planned End Date	Percent Complete
1	Complete initial technical and economic modeling.	June 15, 2007	Dec. 31, 2007	100%
2	Complete advanced membrane property simulations by atomistic and thermodynamic modeling calculations.	June 15, 2007	Dec. 31, 2007	100%
3	Complete the design and construction of membrane separators using sulfur resistant palladium alloy and membrane separators using PdCuTM.	June 15, 2007	May 30, 2008	83%
3.1	Complete initial evaluation of Pd-alloy/nanoporous oxide membrane test articles.	Apr. 1, 2009	July 31, 2009	100%
4	Complete hydrogen solubility tests using various alloys for six-to-twelve separators, and predict hydrogen permeability performance.	Mar. 15, 2008	June 30, 2008	100%
5.2	Complete testing of "best of class" separators.	Mar. 15, 2008	Sep. 30, 2008	100%
5.2	Complete evaluation of Pd-alloy/nanoporous oxide membranes	Apr. 1, 2009	Mar. 31, 2010	70%
5.3	Complete evaluation of advanced PdCuTM separator units.	June 15, 2008	Apr. 30, 2009	0%
6	Complete the revised technical and economic modeling.	Dec. 1, 2008	Mar. 31, 2010	100%
6	Make recommendation for best development path to commercialization of hydrogen separation membranes.		Mar. 31, 2010	100%

Dense Metallic Pd Membranes Technical Approach

Experimental verification of commercial fcc & novel bcc-stabilized PdCu alloys

Technical: Atomistic Modeling

Development of modeling methodology to explain sulfur tolerance

- PdAg alloys known to be sulfur intolerant
- NETL has shown that Pd can irreversibly convert to Pd₄S
- P+E PdCu alloys are sulfur resistant & do not irreversibly convert to Pd₄S

Alloys that can incorporate sulfur into their lattice have an opportunity to make Pd₄S ted Technologies Research Center

Technical: Sulfur Tolerance & Flux

P+E fcc PdCu alloy performance ≥450 °C for H₂S in H₂/N₂ mixtures identical to runs without H₂S

Temperature / °C

Technical: Tube Defects Reduce Operating Pressure

- **EDS Sulfur Map**
 - Reported tube failures in 2009 on PdCu separators
 - Failures are not related to sulfur
 - 10% of tubes have a defect from the manufacturing process
 - Mitigate with screening procedures & changes to process
 - Tube defects limit operation to less than 220 psig

Operation for >500 h demonstrated for 200 psia without failure nited Technologies **Research Center**

Technical: DOE Protocol Testing on fcc PdCu

Technical: 2009 UTRC Ternary Alloy Performance

Performance comparable to P+E fcc PdCu alloy

Tube is 100% bcc on surfaces and in bulk, but appears to have

TM oxide segregation that alters Cu/Pd ratio & thus $\rm H_2$ diffusivity United Technologies Research Center

Technical: Surface Modification Improves Ternary 2X

- Additional characterization performed & polishing procedure implemented to remove surface layers
- Performance is 2× 2009 results
 United Technologies Research Center

Technical: Techno-Economic Analysis for PdCu

- Total separator cost is approximately 2–4 times the metal cost
- Operating pressure affects tube thickness and H₂ recovery and thus cost

Leasing and recycling of metal necessary to reduce separator cost

United Technologies
Research Center

Collaborations

- Partners
 - Power+Energy (Industry)
 - Manufacture of hydrogen separators
 - UTRC alloy fabrication
 - Metal Hydride Technologies (Ted Flanagan from Univ. of Vermont)
 - Fundamental experiments on hydrogen solubility
 - Experimental measurements of alloy systems for thermodynamic phase modeling
- Technology Transfer
 - Colorado School of Mines (Robert Braun from Colorado School of Mines)
 - DOE project: Coal/Biomass Gasification at the Colorado School of Mines
 - Transferred permeability model for trade studies on using membranes in system analysis of integrated gasification fuel cell power plants (IGFC)

Focus on UTRC alloy improvements & testing

Construct ternary alloy separator for testing

- Conduct DOE testing protocol tests to validate performance and durability
- Move to larger scale demonstration (e.g., 100 lb/day H₂) with real gasifier exhaust in a follow on effort

Project Summary

- Developed an atomistic modeling screening approach for sulfur tolerance
 - Can virtually screen materials to see if they are susceptible to sulfur attack
- Evaluated performance of fcc PdCu separators under DOE testing protocol
 - Reconfirmed sulfur resistance & stability of PdCu alloy
 - Demonstrated understanding of tube defect issue limitation on current operating pressure levels
- Produced single tube separator with UTRC ternary composition
 - Compositional barrier formed on outer surface of membrane
 - Polishing process identified to remove surface barrier
 - Performance of membrane improved by 2x versus 2009 results

