

R&D Status for the Cu-Cl thermochemical cycle-2010

Michele Lewis-P.I. **Magali Ferrandon-Presenter** Argonne National Laboratory June 8, 2010

PD013

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Time Line

- Start date: 10/06
- End date: TBD
- % complete: 30%

<u>Budget</u>

- \$100 K for FY09
- \$550 K for FY10

Barriers

- U. High temperature thermochemical technology
- V. Robust materials
- W. Cost

Partners

- Atomic Energy of Canada Ltd
- Five Canadian universities
- Penn State & Univ. of S. Carolina
- Commissariat à l'Energie Atomique

Relevance to DOE Mission

- Objective: Develop a <u>commercially viable</u> process for producing hydrogen that meets DOE <u>cost and efficiency targets</u> using the Cu-Cl thermochemical cycle
- 3 major reactions in cycle
 - Hydrolysis
 - $2CuCl_2 + H_2O \rightarrow Cu_2OCl_2 + 2HCI$
 - Oxychloride decomposition
 - $Cu_2OCl_2 \rightarrow 2CuCl + \frac{1}{2}O_2$
 - Electrolysis
 - $2CuCl + 2HCl \rightarrow 2CuCl_2 + H_2$
 - Anode: $2Cu^+$ → $2Cu^{2+}$ + $2e^-$
 - − Cathode: $2H^+ + 2e^- \rightarrow H_2$

Relevance to DOE Mission-2

- Features of cycle that promote meeting targets and overcoming barriers
 - The 550°C maximum temperature allows coupling with the solar power tower, which is near commercialization
 - Conceptual design uses commercially practiced processes
 - High yields in thermal reactions; no catalysts required
 - Preliminary Aspen flowsheet indicates it is possible to meet the efficiency and cost targets
 - Key challenges
 - Electrolyzer:
 - Inhibit copper crossover
 - Achieve stable cell performance
 - Identify and cost materials of construction
 - Reduce steam demand for hydrolyser

Approach - critical path

- Electrolysis reaction: $2CuCl + 2HCl \rightarrow 2CuCl_2 + H_2$
 - Potential showstopper: Copper crossover in the electrolyzer causes cell potential to increase and eventually destroys the cell
 - Continue collaboration with our partners in Canada and Penn State
 - Investigate other designs for electrolyzers
 - Initiate new program on membrane development
 - Test available membranes that show high conductivity and low selectivity for all species except the proton
 - Tune selected membranes to obtain desired characteristics
 - Test various coatings on a Nafion[®] substrate to obtain size selectivity
 - Meet targets:
 - 0.70 V, 500 mA/cm² by 2015
 - 0.63 V, 500 mA/cm² by 2025

Approach - critical path

- Materials of construction
 - CuCl₂ solutions and HCl solutions are extremely corrosive
 - Contact vendors, get coupons for testing and cost estimates
 - Work with collaborators in Canada who are studying corrosion of possible materials
- Hydrolysis reaction: $2CuCl_2 + H_2O \rightarrow Cu_2OCl_2 + 2HCl$
 - Large amount of excess water is required for high yields
 - Drives capital costs up because of the number/size of reactors and the efficiency down because of the high heat of vaporization of water
 - Optimize process conditions to reduce steam demand

Previous Technical Accomplishments - FY09

- New hydrolysis reactors designed and tested
 - Yields obtained with fixed bed reactors were too low to be practical
 - More realistic spray reactors using nebulizer and ultrasonic nozzle were tested
 - Ultrasonic nozzle preferred
 - Easier to use (no clogging, no inert gas needed)
 - Higher yields of Cu_2OCI_2 (at $H_2O/CuCI_2$ ratios of 20-23)
 - Smaller and free-flowing Cu₂OCl₂ particles (<100 nm to 30 μm)
 - » Important because process design uses gravity feed for transfer
- In-house Cu₂OCl₂ decomposed between 400 and 550°C. CuCl was discharged as a molten salt and oxygen was released
 - Measured yield of O₂ was nearly 100% of theoretical
- Preliminary Aspen flowsheet prepared and H2A cost analyses completed

Technical Accomplishments

Sub-atmospheric hydrolysis reactor built and tested

Steam-to-CuCl₂ ratio can be decreased at reduced

- Aspen sensitivity studies show that complete conversion is shifted to lower $H_2O/CuCl_2$ (20 to 13) when pressure is decreased from 1 to 0.5 bar
- Similar results from lab: maximum yield of Cu₂OCl₂ at H₂O:CuCl₂=15 and 0.4 bar
 - In addition, CuCl yield lower at 0.4 bar than at 1 bar
 - Two paths for CuCl formation:
 - $2CuCl_2 \rightarrow 2CuCl + Cl_2$
 - $Cu_2OCl_2 \rightarrow 2CuCl + 0.5 O_2$

No Cl_2 observed below 400°C

Cumulative formation of HCl (a) and Cl_2 (b) as a function of time and temperature during the hydrolysis reaction of $CuCl_2$ in a fixed bed

Tests conducted at CEA*

Conditions: Ar flowrate = 5L/h, $H_2O/CuCl_2=15$.

*CEA = Commissariat à l'Energie Atomique

a) Below 390°C, only HCl was observed

pergie atomique • energies alterr

b) Above 400°C, CI_2 was observed

The CuCl electrolyzer is under development

- Copper crossover from anode to cathode was observed with all tested membranes (anion and cation exchange membranes)
 - Cell performance degrades
- New work focuses on cation exchange membranes
 - High selectivity for H⁺ & negligible transport of all copper complexes
 - Low electrical resistance
 - Good mechanical strength and long term stability

Electrolyzer development at Penn State University looks promising

Experimental set up is now complete

- Best performance: current density of 300 mA/cm² at 0.7 V at 30°C (expect higher current density at 80°C)
- Anolyte: 0.2m CuCl in 2m HCl
- Catholyte: water
- 5 h duration

Longer term test conducted at Atomic Energy of Canada Limited

- Copper crossover observed in all early 25°C tests; cell potential started to increase after 20 min in first set of tests
- More concentrated anolyte and longer (95 h) cell stability in most recent tests

 Higher temperatures/stirring improve kinetics and increase achievable current density for a given voltage

Summary of the Technical Accomplishments - FY10

- Promising results at AECL and Penn State for improving the electrolyzer performance and inhibiting copper crossover
 - AECL has extended the stability of the cell's potential from 20 min to 95 h
 - PSU's design was stable for 5 h using a liquid water catholyte
- A decrease in the reactor pressure (with aspirator) reduces the amount of steam required for high yields (>90%) of the desired Cu₂OCl₂ product
 - H₂O/CuCl₂ ratio reduced from 20-23 to 11-15
- Tests conducted at CEA with a H₂O/CuCl₂ ratio of 15 showed that only HCl was formed at temperatures ≤390°C, some Cl₂ above 400°C.

 University of Ontario Institute of Technology has just finished outfitting a building for a large scale integrated demonstration; large scale reactors are in place and are being cold tested

Future work

- Continue development/testing of new membrane materials and electrolyzer designs to inhibit copper crossover and obtain stable cell performance
 - Mechanism for copper crossover to be investigated
 - Test performance over a wide range of HCI/CuCl₂ concentrations and temperatures up to 80°C
- Identify materials of construction
- Complete revisions of Aspen flowsheet and cost analysis
- Optimize performance of hydrolyser operating at sub-atmospheric pressure to further reduce the steam demand
 - Model assumes a $H_2O/CuCl_2$ ratio of less than 10
 - Determine mechanisms for CuCl₂ hydrolysis and CuCl formation; measure kinetics for hydrolysis and decomposition reactions using synchrotron radiation at the Advanced Photon Source (General Users Proposal submitted)

Collaboration - Acknowledgements

- Industry: Atomic Energy of Canada Ltd (AECL)
- Universities:
 - University of Ontario Institute of Technology (UOIT), Guelph University, McMasters University, Western Ontario University, University of Toronto, Pennylvania State University and University of South Carolina
- Federal: Commissariat à l'Energie Atomique (CEA), France
- Consultant: Orion Consulting
- DOE-EERE for their financial support and encouragement

Supplemental Slides

Speciation studies at PSU

- Speciation is determined by pH, concentrations of Cu species and Eh as shown by the speciation diagrams for Cu(I) conversion to Cu(II) for two sets of relatively dilute conditions:
 - a. 0.2 m CuCl + 2 m HCl(aq)
 - b. 1 m CuCl + 6 m HCl(aq)

Decomposition of Cu₂OCl₂ accelerated in steam

- In dry Ar, Cu₂OCl₂ decomposes between 400 and 550°C:
- $Cu_2OCl_2 \rightarrow 2 CuCl + \frac{1}{2}O_2$

- In humid Ar, Cu₂OCl₂ starts to decompose already at 350°C
- Need to investigate mechanism of decomposition with and without steam