This presentation does not contain any proprietary, confidential, or otherwise restricted information

2010 DOE Hydrogen Program Review

Hydrogen Delivery Infrastructure Analysis

Marianne Mintz and Amgad Elgowainy Argonne National Laboratory June 9, 2010

PD014

1

Overview

Timeline

Start: FY 2007End: Continuous

Budget

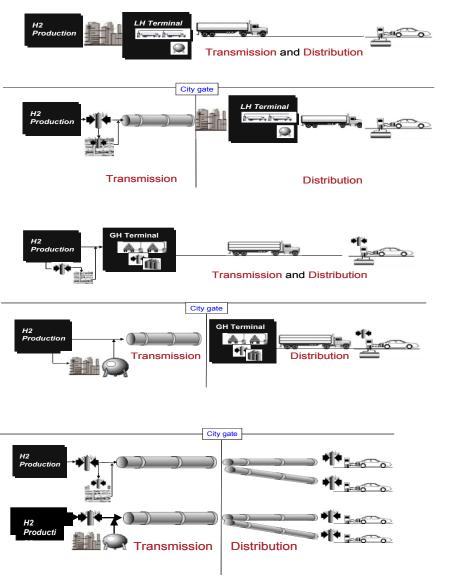
- 100% DOE funding
- FY09: \$400 k
- FY10: \$200 k

Barriers/Challenges

- Lack of analysis of H2/carrier infrastructure options and tradeoffs
- Cost and efficiency of delivery components
- Lack of appropriate models and tools/stove-piped analytical capability

Partners

- Argonne National Lab
- National Renewable Energy Lab
- Pacific Northwest National Lab


Relevance

- Provide platform for comparing alternative component, subsystem and system options to reduce cost of hydrogen delivery
 - Expand Hydrogen Delivery Scenario Analysis Model (HDSAM) to include 350-bar tube trailers and 500-bar cold gas delivery
 - Estimate capital investment, levelized cost, energy and greenhouse gas (GHG) emissions of these options
 - Investigate system and subsystem tradeoffs (e.g., storage vs. peak sizing, boost compression vs. cascade) and strategies for optimization
- Assist in program planning
 - Investigate component performance/efficiency to achieve cost goals
 - Analyze delivery options (e.g., wind-to-LH2)
- Develop new tools that build off existing DOE-sponsored tools (e.g., H2A production, Fuel Cell Power Model, GREET)
 - Collaborate with model developers and lab partners
 - Collaborate with industry for input and review

Approach

- Create transparent, flexible, user-friendly, spreadsheet-based tool (HDSAM) to examine new technology, operating and packaging options for hydrogen delivery
- Provide modeling structure to automatically link and size components into optimized pathways to satisfy requirements of scenarios, and compute component and system costs, energy and GHG emissions
- Collaborate to review input assumptions, analyze storage, station, dispensing and conditioning options, and review results
- Provide thorough QA
 - Internally via partners
 - Externally, via briefings to Tech Teams, early releases to DOE researchers, industry interaction

HDSAM 2.2 Models Transmission, Distribution & Bulk Storage Needed to Meet Scenario-Defined Supply & Demand

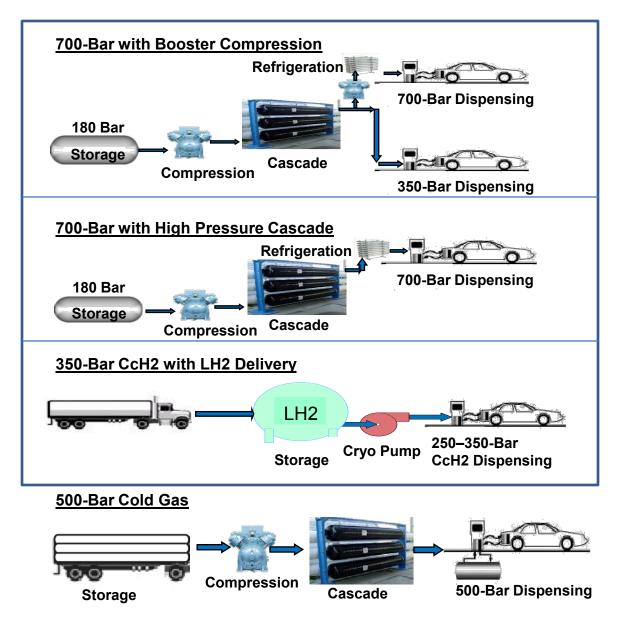
Liquid H2 Distribution Pathways

- Bulk geologic or liquid hydrogen storage
- Pipeline or truck transmission
- Urban, interstate or combined markets
- 50-60,00 kg/d GH2 fuel stations
- LH2 storage
- + Cryo-compressed (CcH2) dispensing

Compressed GH2 Distribution Pathways

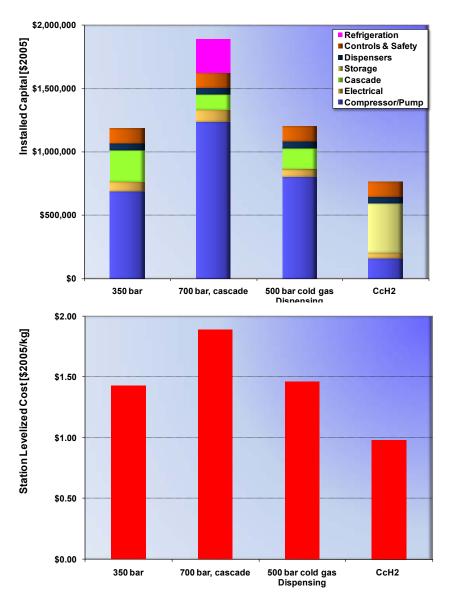
- Bulk geologic or liquid hydrogen storage
- Pipeline or truck transmission
- Urban, interstate or combined markets
- 50-6000 kg/d GH2 fuel stations
- 350-bar dispensing
- 170-bar tube trailer
- + 700-bar dispensing (cascade or boost compressor)
- 350-bar tube trailer

Pipeline Distribution Pathways

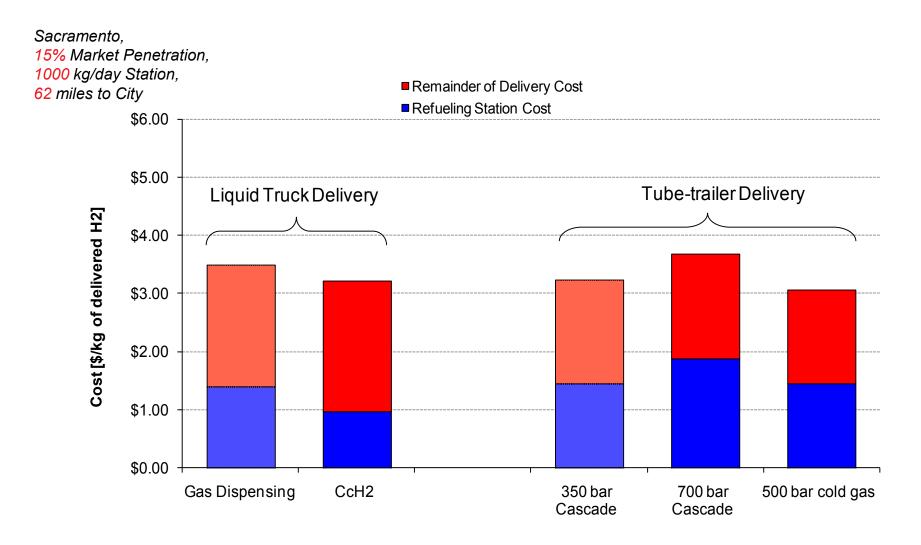

- Bulk geologic or liquid hydrogen storage
- Urban, interstate or combined markets
- 50-6000 kg/d GH2 fuel stations
- **350-** or 700-bar dispensing (cascade or boost compressor)
- + 700-bar dispensing (cascade or boost compressor)

FY2010 Accomplishments

Month/Year	Milestone
March 2010	Cold hydrogen gas delivery
April 2010	Fuel station footprint analysis
May 2010	Posted Version 2.2 of Hydrogen Delivery Scenario Analysis Model (HDSAM 2.2)
Sept. 2010	Wind-to-LH2 analysis
Continuous	IEA Task 28 support (May 2010 startup)
Sept. 2010	HDSAM 2.3


COLD GAS PATHWAY

Cold GH2: Sweet Spot between CcH2 and 700-bar?

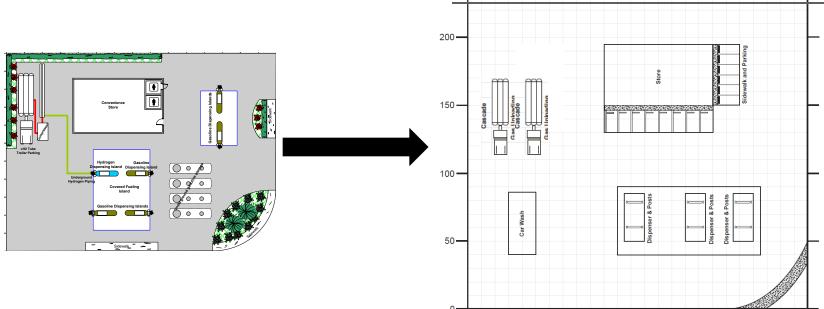

- Tubes loaded at terminal with cold GH2 (90k) at 350-bar; return at 14-bar (36k) after unloading
- Tube trailer delivered capacity =1500 kg
- Smaller station compressor → lower power/energy use
- GH2 rises to130k at 600bar at full charge in cascade → higher cascade cost
- GH2 dispensed to vehicle at 190k and 500-bar at full charge
- Higher on-board energy density → longer driving range than 350-bar

Fuel Stations Can Account for Half of H2 Delivery Cost. CcH2 and Cold Gas Options Cut Station Cost

- Installed capital of equivalent capacity H2 stations = \$0.75–\$1.8 million.
- With no refrigeration and cascade and less storage, CcH2 stations shift costs upstream.
- Installed capital and levelized cost of CcH2 station is <50% of 700-bar station.</p>
- LH2 storage > 50% CcH2 installed capital cost.
- 700-bar GH2 with high pressure cascade is less expensive than booster-compressed option (not shown).
- 500-bar cold gas station costs ~\$0.50/kg more than CcH2 station dispensing but <700-bar GH2 with cascade charging.
- Station cost for 500-bar cold GH2 and 350-bar GH2 ~\$1.40/kg.
- But 500-bar cold GH2 provides > energy density and longer driving range.
- All costs are levelized 2005 \$ for delivery only.

Levelized Cost of Delivering 500-Bar Cold GH2 Is Slightly Less Than 350-Bar GH2 or CcH2

FUEL STATION FOOTPRINT


HDSAM Approach and Assumptions

- Calculate land area allocated to hydrogen for cost purposes (land rented @ \$0.30/ft²/month → \$3000/month for 110' x 130')
- Hydrogen dispensers displace gasoline dispensers (up to 6 dispensers)
- Gasoline baseline area extended to accommodate H2 components (e.g., storage, compressors, > 6 dispensers, etc.), and setback/separation distances
- Land area allocated to hydrogen based on relative number of hydrogen dispensers and any incremental increase in station area; area occupied by cstore not allocated to either gasoline or hydrogen (it generates its own revenue)

Comments from industry infrastructure and logistic experts

- Baseline station footprint (130' x 110') is small
 - New gasoline stations average 200' x 200' with 6-10 dispensers
 - Bigger c-store + car wash
- Mixed risk from dispensing gasoline and hydrogen under the same canopy
- Truck unloading path should be unobtrusive, not require excessive maneuvering to offload product, and permit at least one 90° turn
- Re-examine setback distances based on NFPA requirements

Code Compliance Could Quadruple Station Size (Not All Allocable to H2) and Increase Cost

250

200

- Original TIAX-developed station footprint, 110x130 ft, including gasoline dispensing and C-store
- Alternative footprint, 230x250 ft, including gasoline dispensing, C-store, car wash, 2nd tube trailer bay and "full" compliance with current NFPA requirements

Alternative footprint adds as much as \$1/kg to levelized H2 cost for very small stations, less for larger

100

Draft report currently under review

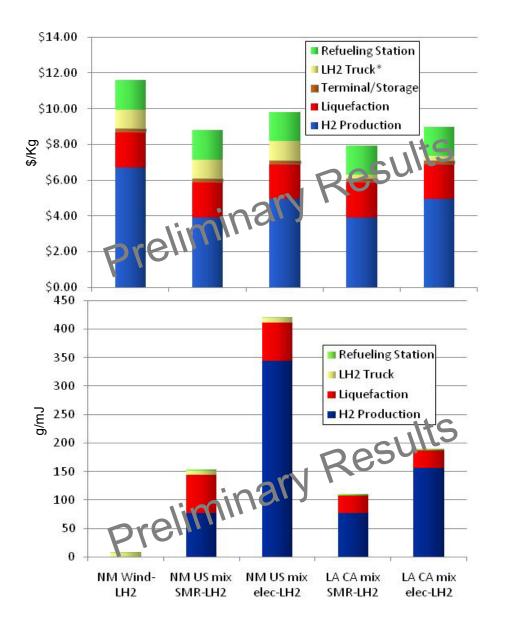
150

But Revisions, Exemptions or Local Restrictions Could Alter Footprints, Particularly for Early Stations

Shell's 350-bar West LA. station is very compact with H2 storage above a shared gasoline/hydrogen island.

By contrast, their 700-bar Culver City station separates H2 from gasoline dispensing and incorporates additional safety barriers.

Other stations eliminate C-store and other amenities


WIND-TO-LH2 ANALYSIS

Key Assumptions/Scope of Wind-to-LH2 Analysis

- Dedicated 252 MW wind farm producing H2 (no electricity export to grid)
- "Generic case study": wind site in vicinity of Albuquerque supplying LH2 for ~80,000 LD FCVs in LA (~800 mi)
- Evaluate alternative uses of wind power
- Collaborative effort:
 - NREL: Cost contribution of wind turbines, accessories and electrolyzers in H2 production; cost of H2 transport by rail
 - ANL: cost contribution of liquefaction, linehaul truck transportation and distribution to LA H2 fueling stations; energy and GHG assessment
 - PNNL: review and quality assurance
- Joint report will document results (Sept. 2010)

Assumptions			
Component	Capacity	Other	
Turbines (84)	3MW rated 106 MW	42% CF (106 MW output)	
Electrolyzer	160,000 kW ac max	55 kWhr/kW alkaline	
GH2 storage	4,000,000 kg	Saline cavern	
Liquefier	40 tpd	10 kWh/kg \$1000/kg	
LH2 truck	4200 kg		
H2 fuel stations	400 kg/d		
LH2 storage	3x daily demand	At city gate terminal	

Wind-to-LH2 Levelized Cost May Be Higher But GHG Emissions Are Lower Than Selected Alternative H2 Pathways

- Compared 5 pathways: Albuquerque-to-LA via wind-to LH2, SMR-to-LH2 and electrolysis-to-LH2; centralized production in LA via SMR and electrolysis.
- Largest cost is production, followed by liquefaction and fuel station
- Albuquerque-based production assumes LH2 truck transmission, excluding labor cost for 2nd driver.
- 9g/MJ (18 g/mi) WTW GHG emissions for wind-to-LH2 FCV.
- 446 g/MJ GHG (890 g/mi) WTW for gasoline light-duty vehicle.

Future Work

Month/Year	Milestone
September 2010	Post HDSAM 2.3. Enhancements include cold gas tube trailer delivery and revised station and terminal footprints.
December 2010	Complete Phase 2 of wind-to-LH2 analysis. Analyze additional options in report for external review.
June 2011	Investigate advanced compression; geologic and other options for bulk H2 storage; additional markets; incorporate necessary updates to HDSAM.
September 2011	Analyze other renewable hydrogen options using HDSAM and related tools.

Project Summary

- Relevance: Provide platform to evaluate hydrogen delivery (in \$, energy and GHG emissions), estimate impact of alternative conditioning, distribution and storage options; incorporate advanced options as data become available; assist Hydrogen Program in target setting.
- **Approach:** Develop models of hydrogen delivery components and systems to quantify costs and analyze alternative technologies and operating strategies.
- **Collaborations**: Active partnership among ANL, NREL and PNNL, plus regular interaction with Fuel Pathways and Delivery Tech Teams, DOE researchers and industry analysts.

Technical accomplishments and progress:

- Version 2.2 of HDSAM completed and posted
- Cold gas pathway defined, analysis and coding begun
- Fuel station and terminal footprints re-evaluated
- Analysis of wind-to-LH2 renewable pathway begun
- Future Research: Expand models to include new options (advanced compression, storage) revise/update data and respond to Tech Team recommendations, analyze renewable hydrogen or other options.

Marianne Mintz mmintz@anl.gov Project PD014