Oil-Free Centrifugal Hydrogen Compression Technology Demonstration

Hooshang Heshmat, PhD Mohawk Innovative Technology, Inc. June 9, 2010

Project ID # PD016

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline

- Start Sept 1, 2008
- Funding Authorized 2/28/09
- End Aug 31, 2011
- 30 % Complete

Budget

- Total project funding
 - \$2,992,416 DOE
 - \$1,149,253 MiTi/MHI Cost Share
- \$1,496,208 FY08/09 Funding
- \$1,496,208 FY10/11 Funding

Barriers

- Hydrogen Delivery Compressor
 - Reliability
 - System Cost
 - Efficiency of H₂ Gas Compression

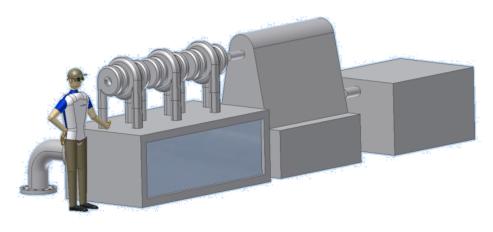
Partners

- Lead: Mohawk Innovative Technology, Inc. (MiTi[®])
- Mitsubishi Heavy Industries

Relevance

Objective:

- Demonstrate key technologies needed to develop reliable and cost effective centrifugal compressors for hydrogen transport & delivery
 - Flow 500,000 to 1,000,000 kg/day
 - Pressure rise to 300-500 psig up to 1,200-1,500 psig


		Project Target	
Category	2005 Status	FY2012	FY2017
Reliability	Low	Improved	High
Energy Efficiency	98%	98%	>98%
Capital Investment (\$M) (based on 200,000 kg of H2/day)	\$15	\$12	\$9
Maintenance (% of Total Capital Investment)	10%	7%	3%
Contamination	Varies by Design		None

Contaminant-Free/Oil-Free Hydrogen

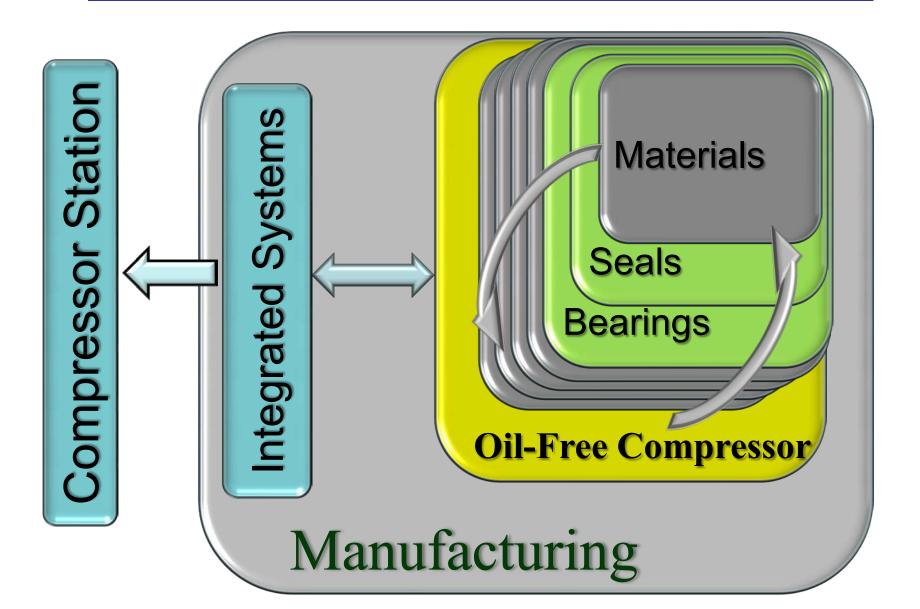
Hydrogen, Fuel Cells & Infrastructure Technologies Program October 2007

Approach/Project Plan

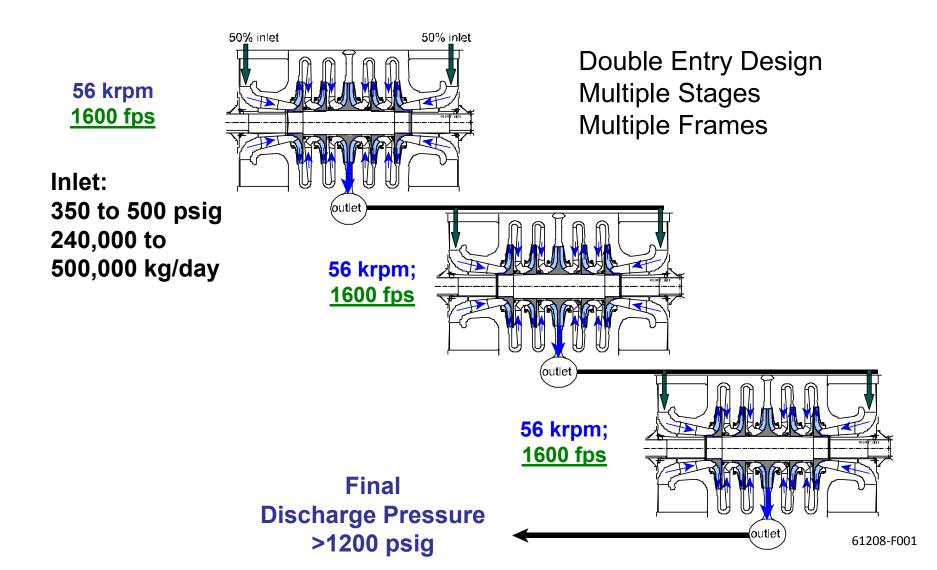
- Compressor Design Analysis
 - Mean Line Analysis
 - Computational Fluid Dynamics
 - Finite Element Structural Analysi
- Design Bearings and Seals
 - Foil Bearings
 - Foil Seals
 - Low Friction Coating
- Select Single Compressor Stage
 - Inlet & Impeller
 - Diffuser & Return
 - Vane and Exhaust
- Fabricate Single Stage and Test to Characterize Pressure & Flow

- Scale System Design
 - Update Multi-Stage, Multi-Frame Compressor System Design
 - Predict Full Compressor System
 Performance
 - Economic Analysis

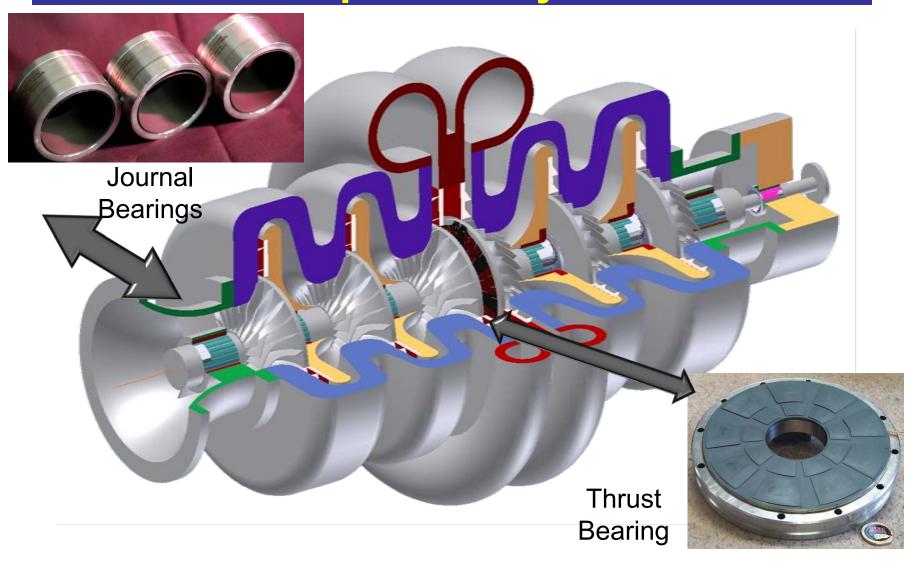
Demonstrate feasibility of very high speed hydrogen centrifugal compressor

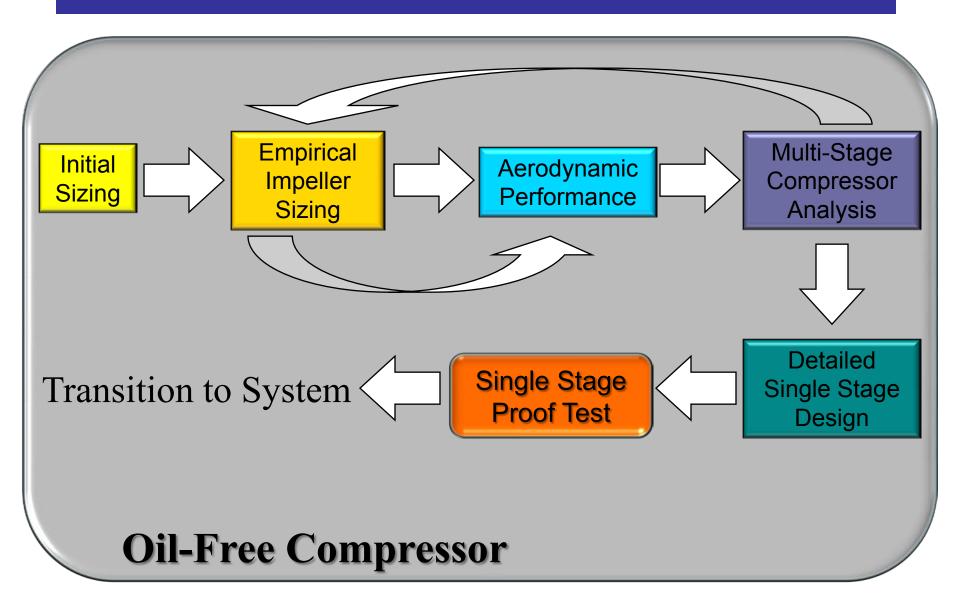

Project Milestones

Month/Year	Milestone or Go/No-Go Decision
July-09	Project Milestone: Complete preliminary modular centrifugal compressor frame design to achieve pressure and flow. Select stage for detailed design, fabrication and test.
April-10	Project Milestone:Complete single stage compressor design including inlet,impeller, diffuser, return channel.Complete oil-free bearing and seal mechanical componentsystem designs


FY10 DOE Milestone: Down select novel compression technology for hydrogen delivery.

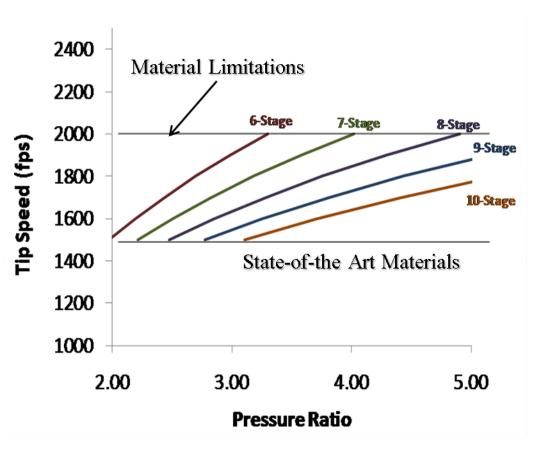
DOE Challenge: Increase the Reliability, Reduce the Cost, and Improve the Energy Efficiency of Gaseous Hydrogen Compression for Transportation and Delivery


Compressor Design Methodology


Modular Centrifugal Compressor System

Modular Double Entry Centrifugal Compressor System

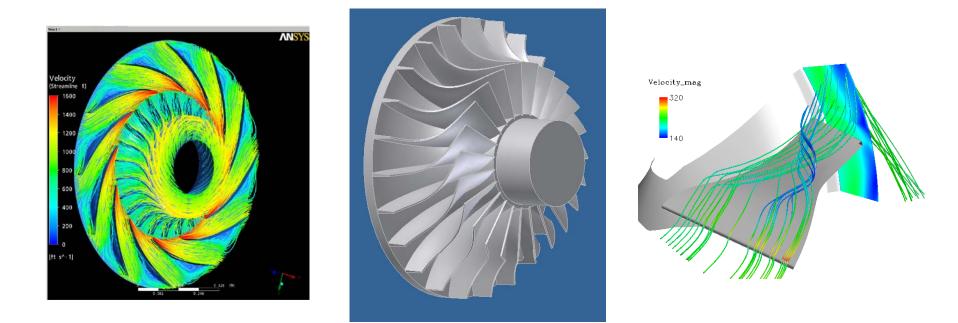
Compressor Design Process


Aerodynamic Design

Design Criteria

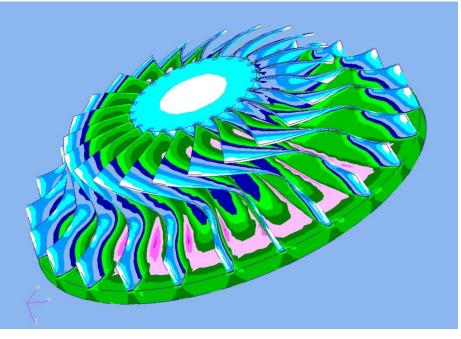
- Pure Hydrogen
- Inlet Pressure 350 & 500 psi
- Discharge Pressure >1,200 psi
- Mass Flow 240,000 kg/day & 500,000 kg/day
- Produce Aerodynamically Stable Compressor Stages
- Key Design Variables:
 - Tip Speed
 - Diffuser Design
 - Impeller Design Optimization
- Analyze Multi-Stage Stability

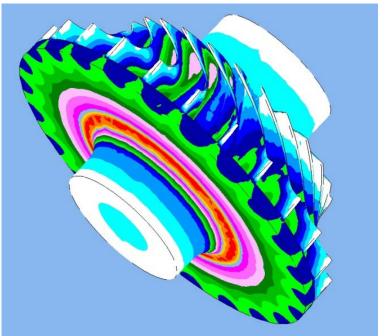
Parametric Study Results: Selecting Number of Stages


- Results Obtained Using Mean-line Analysis
- Number of Stages
 Function of Tip Speed
- Tip Speeds > 2,000 ft/s Could be Considered High Risk for H₂ Environment

Aerodynamic Design Results

- Advanced Low-Risk, High-Range Modular Approach Provides Flexibility
 - Backup In Case of Reduced Performance
 - Accounts For Changes To Inlet Conditions
 - Accommodates Material Limitations
- 9 Stage (3 Frames)
- 1,211 psi Discharge Pressure
- 7,835 HP (5,840 Kw)
- 1,800 ft/s
- 240,000 kg/day


Computational Fluid Dynamics Analysis


- Converged Solution of Complete Single Stage Obtained
- Excellent Correlation with Mean-Line Analysis Predictions
- Performance Analyzed from 70-120% of design flow
- No Turbulence or Flow Separation Identified in Flow path

Impeller Finite Element Structural Analysis

Maximum Blade Stresses

Maximum Disk Stresses

- Maximum Compressor Impeller and Blade Stresses at 1600 ft/s for HS Steel
- Backface of Impeller = 110 ksi (2.6 Stress Factor of Safety)
- Blade Stresses = 73.5 ksi (2.3 Fatigue Factor of Safety)

Strength and Fatigue Requirements

Materials	Al Alloy	Ti Alloy	HS Steel
Density (lb/in ³)	0.1	0.162	0.28
Modulus of Elasticity (10 ³ ksi)	10.6	16	31
Yield Strength (ksi)	61	160	
Ultimate Strength (ksi)	84	170	290
Max von Mises Stress at 1600 fps (ksi)	39.5	64	110
Stress Safety Factor at 1600 fps	2.1	2.7	2.6
Fatigue Strength (ksi)	8.4	101	166
Max Blade Stress at 1600 fps (ksi)	26.4	38.6	73.5
Fatigue Safety Factor at 1600 fps	0.3	2.6	2.3
Max Disp Magnitude at 1600 fps (mil)	17.8	19.1	16.8
Max Axial Disp at 1600 fps (mil)	12.8	13.8	12.0

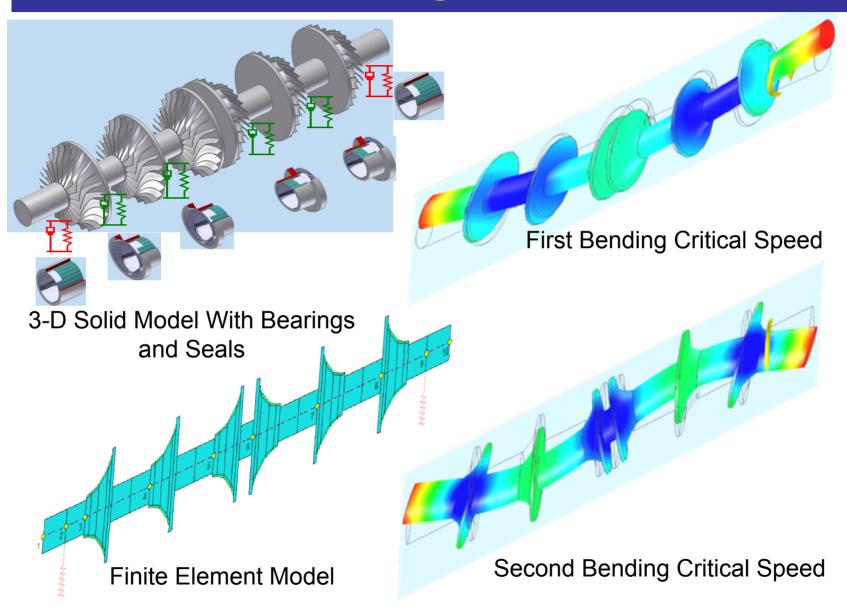
Materials Issues/Needs

Structural Materials (Housing)

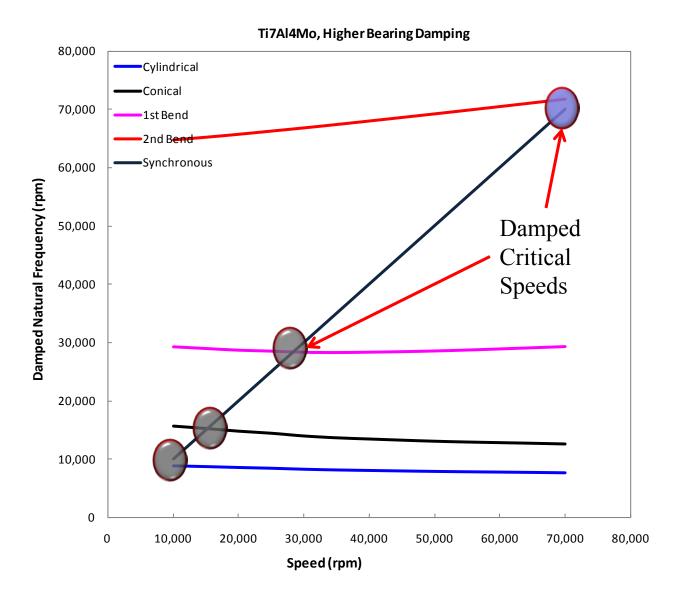
- Durability under high internal pressures
- Shafting Materials
 - High strength, fatigue endurance, high toughness

Bearings and Seals

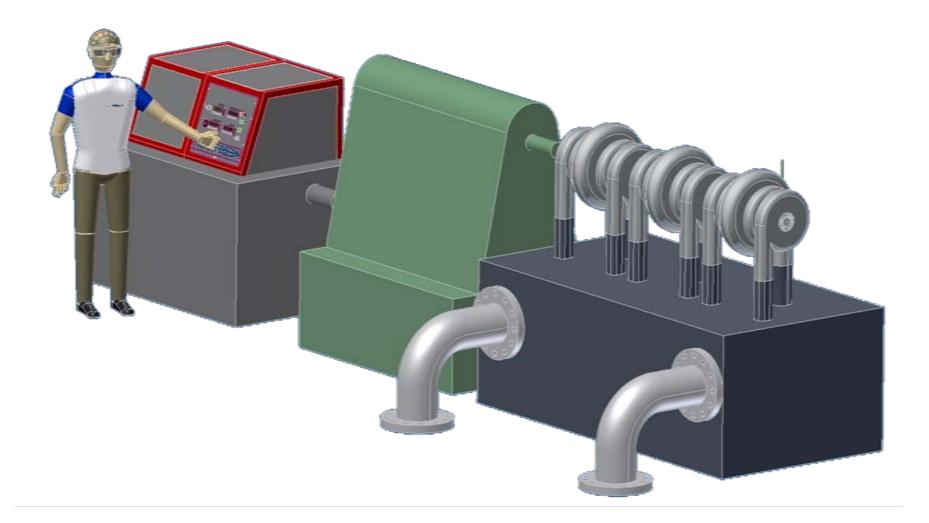
- High elastic modulus, fatigue resistance,
- Material Characterization in H₂ and in thin film form


Tribological Coatings

• Low friction, wear resistant, electrical/thermal properties


Hydrogen Barrier Coating

• Reduce hydrogen permeability


Rotor-Bearing Foundation

Whirl Map Stability Analysis

Compressor System Layout

Future Work for FY10-FY11

- Complete Single Stage Test Rig Design and Hardware Fabrication
- Conduct Single Stage Performance Testing at MiTi and MHI
- Validate Performance of Foil Bearings, Foil Seals, Aerodynamics, Rotordynamics
- Review Lessons Learned and Modify Compressor Design Accordingly
- Update Economic Estimates

Modular Designs

Design Strategy	Design Point A 350-1200 psig 240,000 kg/day	Design Point B 500-1200 psig 500,000 kg/day
High Margin Design Approach	9-Stages 1800 fps 6.5" diameter 7,835 Hp	9-Stages 1500 fps 6.5" diameter 12,250 Hp
High Performance/Risk Design Approach	6-Stages 2000 fps 6.5" diameter 8,036 Hp	6-stages 1800 fps 6.5" diameter 13,432 Hp

Energy Consumption Metrics

Design Strategy	Design Point A 350-1200 psig 240,000 kg/day	Design Point B 500-1200 psig 500,000 kg/day
State of The Art Design Approach	9-Stages 7,835 HP 0.584 kW-hr/kg	9-Stages 12,250 HP 0.439 kW-hr/kg
Advanced High Performance Design Approach	6-Stages 8,036 HP 0.599 kW-hr/kg	6-stages 13,432 HP 0.481 kW-hr/kg

Compressor Meets DOE Targets

Characteristics	Natural Gas Pipelines	DOE Target	MiTi Projection	MiTi Projection
Efficiency (%)		98%	98%	98%
Hydrogen Capacity Range (kg/day)		100,000 to 1,000,000		
Hydrogen Capacity Target (kg/day)		200,000	240,000	500,000
Hydrogen Leakage		<0.5	0.2	0.2
Hydrogen Purity		99.99	99.99	99.99
Inlet Pressure (psig)	300-700	300-700	350	500
Discharge Pressure (psig)	1,000-1,200	1,000-1,200	1,285	1,226
Compressor Component Cost (\$Million)	\$9.2 ¹	\$9.0	\$4.1	\$6.1
Compressor Drive \$400/HP (\$Million)	\$6.4		\$3.2	\$6.4
Total Compressor Package (2005 \$Million)	\$15.6		\$7.3	\$12.5
Maintenance Cost (% total Capital Investment)	9.3%²	10%7%3%	<3%	<3%
Maintenance Cost (\$/kW-hr)	\$0.0157 ³	\$0.007	<\$0.005	<\$0.005
Package Size (sq-ft)	~1,000	300-350	145	160
Reliability (# Systems Required)		High - Eliminate Redundant Systems		
2 OOT/PRCI Pipeline R&D Forum December 11-12, 2003, Washington, DC; 3 Oil & Gas Pipeline Sept 14, 2009, pp77-79				

Collaborations

Partners/Subcontractors

Mitsubishi Heavy Industries

- o CFD
- FEA
- Single Stage Compressor Test
- Compressor Design Consulting Specialist
- CFD Consulting With Compressor Experience

Project Summary

- Demonstrated that Advanced and Very High-Speed, Oil-Free Centrifugal Compressors Can Meet Hydrogen Delivery Needs
- Refined Multi-Stage/Multi-Frame Compressor Concept
 - Established Stage Pressure Ratios and Flows
 - Defined and Selected Optimum Operating Speeds
 - Selected One Stage for Detailed Design and Test
- Conducted Detailed Design
 - Established Flow Path Including Inlet, Impeller, Diffuser and Return Channel Designs Using Established Design Analysis and Computational Fluid Dynamics for Several Flow and Pressure Conditions
 - Designed Foil Bearings and Seals Using Coupled Elasto-Hydrodynamic Analysis
 - Designed Test Shafting Using FEM Rotor-Bearing System Analyses
- Completed Layout of Single-Stage Test Rig

Hooshang Heshmat, PhD 518 862-4290 x-12 hheshmat@miti.cc