Inexpensive Delivery of Cold Hydrogen in Glass Fiber Composite Pressure Vessels

Andrew Weisberg, Salvador Aceves, Blake Myers, Tim Ross

Lawrence Livermore National Laboratory June 9, 2010

This presentation does not contain any proprietary or confidential information

Overview

Timeline

- Start date: October 2004
- End date: October 2012
- Percent complete: 70%

Budget

- Total project funding
 - DOE: **\$1.5** M
 - Spencer: \$125 k/yr
- Funding received in FY09:
 - \$0 k
- Funding for FY10:
 - \$300 k

Barriers

- F. Gaseous hydrogen storage and tube trailer delivery cost
- G. Storage tank materials and costs

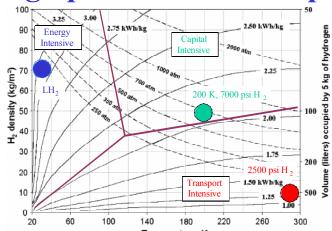
Targets

Exceed DOE 2012 delivery targets:

- Delivery capacity: 700 kg > over 1000 kg
- Tube trailer operating pressure: 7000 psi
- Tube trailer capital cost: < \$500 / kg-H2d

Partners

Ongoing joint projects with composite/vessel manufacturers


- Spencer Composites
- Structural Composites (SCI)
- Quantum
- Boeing

Relevance: Glass fiber vessels reduce hydrogen delivery cost through synergy between low temperature (140 K) hydrogen densification and glass fiber strengthening

- Colder temperatures (~140 K) increase density ~70% with small increases in theoretical storage energy requirements, can be achieved at gas-terminal scale with LNG refrigerators
- Low temperatures are synergistic with glass fiber composites
 - higher glass fiber strength (by > 80%, published for A-Glass) at 140 Kelvin (compared to 300 K)
 - higher gH₂ density increases delivered-H₂ trailer capacity
- glass fiber (~\$6/kg for Glass vs. ~\$23/kg for carbon fiber) minimizes high composite materials cost
- Increased pressure (7,000 psi) minimizes delivered H₂ costs, same design can deliver up to 12,000 psi or build cascade
- Dispensing of cold hydrogen reduces *vehicle* vessel cost ~25% by avoiding over-pressurization during fast fill

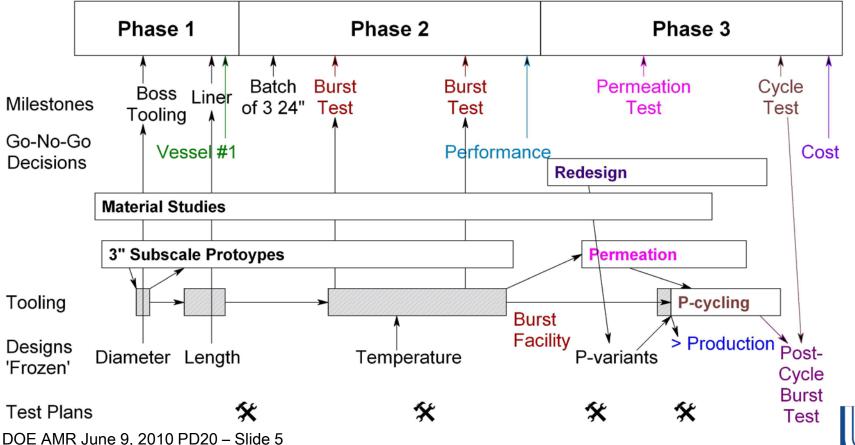
Approach: Conduct experiments and analysis to demonstrate high performance inexpensive glass fiber at low temperature

October 2006: Discovered favorable P-T conditions for H₂ delivery

March 2009: Built and tested many 3" pressure vessels, using ROMP plastic qualified 77 to ~335 K, designed 24" boss

January 2008: Proved > 40% strengthening due to cold operation

April 2010: Built and tested first batch of 3 full scale (24") vessels



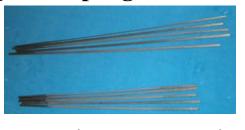
DOE AMR June 9, 2010 PD20 - Slide 4

Approach: 3 Phases (stretched out to 4 years) address technical risks

- Fundamental innovation in plastics for liners and composites *ROMP* plastics are tough, stiff, strong, thermosetting -> big ΔT *Ring Opening Metathesis Polymerization* (Chemistry Nobel Prize)
- Program plan addresses technical risk for all key unknowns:
 compliance, toughness, strength, permeation, novel phenomena

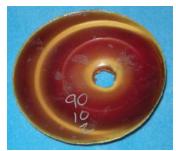
Accomplishments: we built & tested multiple small-scale specimens

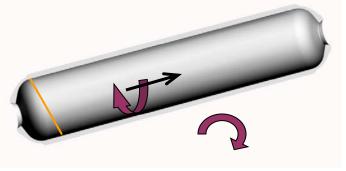
Molded ROMPs, including lap seam

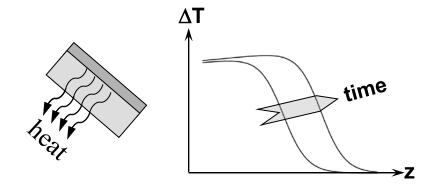


3" liners and vessels test program

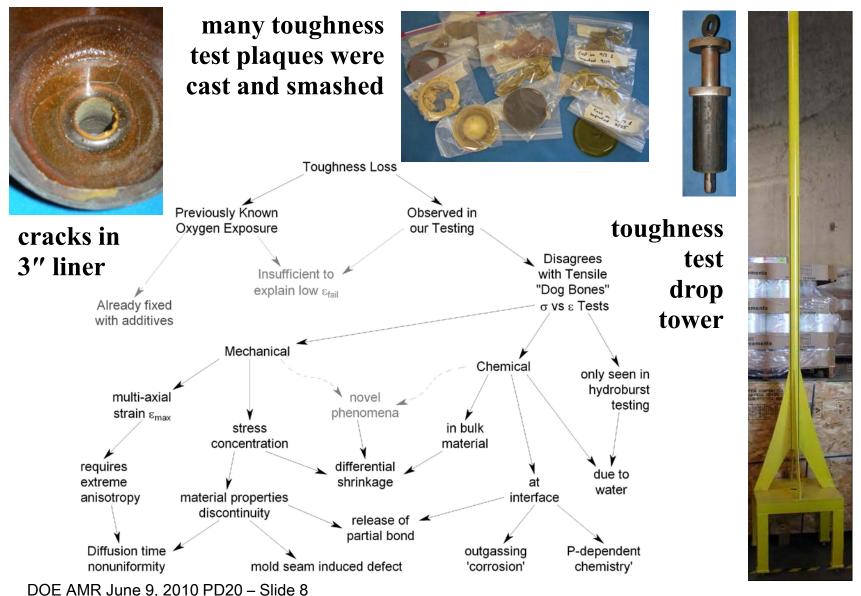
coupon strength test programs


machined composites


Scale-Up Liner Process Failure Mode: overcome with multi-pour introduction of ambient-T ROMP liquid into liner mold tooling



closed mold was poured with a single shot of ambient-T ROMP, then spun on 2 axes



Unpleasant Surprise: 20 minute "pot life" worked smoothly for molding 48" liners – yet emerged from the mold in 2 pieces at 114"

catalysis waves propagate through ROMP, retarded by thermal inertia

The Anomalous Toughness Failure Mode: tensile tests show sufficient stiffness and toughness, yet parts fail at low strain!

We have demonstrated innovative plastic-lined glass cryogenic vessels

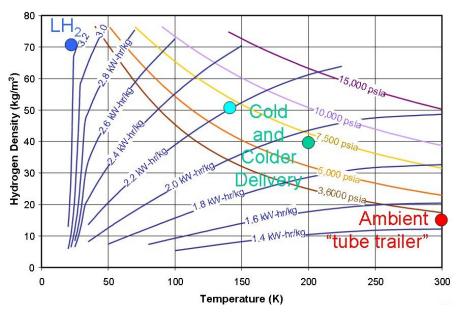
first full scale liner inspected, (x'lucent + borescope) -> no flaws

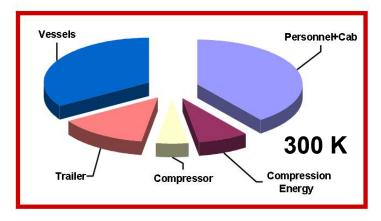
winding
the first
full scale
8,000 psi,
first S-Glass
hydroburst
test

permeation test rig being built as next iteration of shipping case

We have built the first batch of full scale vessels and have commenced destructive/hazardous testing

First 114" S-Glass Pressure Vessel



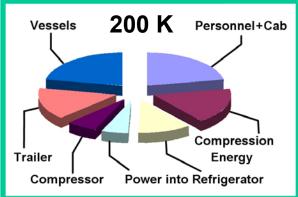


DOE AMR June 9, 2010 PD20 - Slide 10

The Refrigeration Problem: a realistic comparison between delivery options calls for an understanding of cooling costs

Ambient delivery needs no gas-terminal scale refrigeration

Refrigeration power and capital costs are estimated with a conservative 30% efficiency atop the Carnot refrigerator efficiency times the

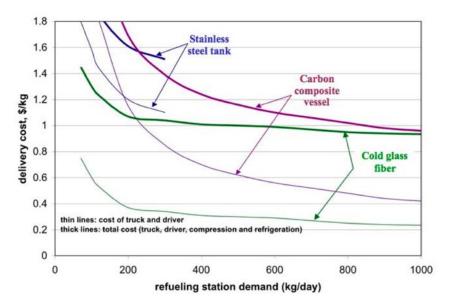

Vessels
Personnel +Cab

140 K

Compression
Energy
Compressor Power into Refrigerator

required exergy to achieve the delivered state

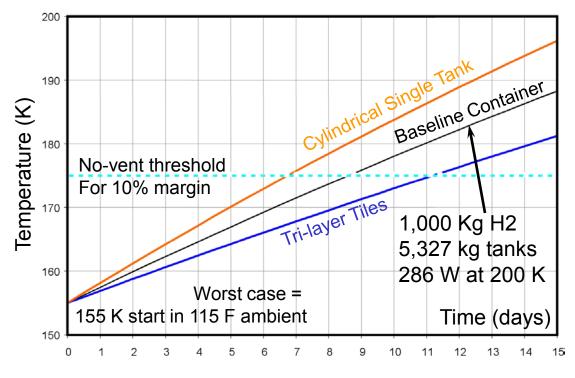
Cold and colder 200 K and 140 K options are shown scaled by \$/kg-d



Detailed modeling predicts cost advantage for 140-200 K H₂ delivery

Delivery Container	Steel 'Tube' Trailer	'Proven' Graphite	300K Glass Fiber	200K Glass Fiber	200K (Max. Capacity)	140K Glass Fiber	140K (Max. Capacity)
Structural Material [only steel is not a composite]	Welded [H2A 2005]	Graphite / Epoxy	Glass / Epoxy	Glass / Epoxy	Glass / Epoxy	Glass / Epoxy	Glass / Epoxy
Mass (kg H _{2-delivered})	340	1,000	1,000	1,000	1,803	1,000	2,348
MEOP (psi) [SF = 2.25]	2,640	6,000	6,000	6,000	6,000	6,000	6,000
T (filled, K)	300	300	300	200	200	140	140
Delivery Cost (\$/kg-H _{2-d})	1.54	1.13	0.95	0.91	0.84	1.01	0.82
Personnel+Cab (\$/kg-H _{2-d})	0.61	0.20	0.20	0.20	0.15	0.20	0.11
Compr. Energy (\$/kg-H _{2-d})	0.12	0.16	0.16	0.16	0.16	0.16	0.16
Compressor (\$/kg-H _{2-d})	0.08	0.10	0.10	0.10	0.10	0.10	0.10
Cooling Energy (\$/kg-H _{2-d})	-	ı	1	0.05	0.05	0.12	0.12
Refrigerator (\$/kg-H _{2-d})	-	1	1	0.06	0.06	0.12	0.12
Trailer (\$/kg-H _{2-d})	0.21	0.15	0.15	0.14	0.11	0.14	0.07
Vessels (\$/kg-H _{2-d})	0.52	0.52	0.34	0.20	0.21	0.17	0.14
Vessels Cost (\$)	165,000	470,000	305,000	186,000	352,000	155,000	306,000
H ₂ Density (kg/m ³)	13.73	26.54	26.54	36.64	36.64	47.68	47.68
Total Volumetric Eff. (%)	56%	45%	45%	44%	47%	36%	54%
Vessel Volumetric Eff. (%)	70%	84%	80%	84%	85%	85%	86%
Fiber Strength (ksi)	-	700	500	750	750	900	900
Vessel Wall Strength (ksi)	60	385	275	412	412	485	485
Vessel Mass (w/o-liner, kg)	40,000	10,291	15,882	7,267	12.426	5,327	11,533

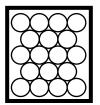
Longer-Reach Transitional Infrastructure: H2A-based modeling, EoS energies predict refrigeration minimizes delivered \$/kg-H₂

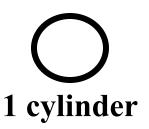


- Gulf and West Coasts have an existing large gH2 supply which can reach the rest of the US for ~\$0.30/kg-H₂ delivered using the vessel+container technology we are developing
- The refrigeration cost is already paid *before* filling our containers could continually chill onboard the long haul platform *but*
- Thermal endurance is sufficient to add a 1 day, 1000 mile rail trip
- LH₂ and Cold-H₂ delivery can mix advantageously, serving all users


The Insulation Sub-Problem: no risk due to weakening as a result of warming unless stranded for weeks

H₂ losses can be avoided due to the large size of our container, its high pressure capability, and a strength margin that must be exceeded before forced venting (via a thermal relief system) is required


Prototype insulation tile development: low- and high-emissivity faces, outside an internal anti-bending structure, clamp gap width in a planar vacuum (metal foil, welded, no-recharging) inner layer


Collaborations: LLNL is teamed with a rocket innovator eager and able to develop novel, very large composite parts

18 in a box

VS.

Spencer Composites contributes all of this project's cost share

- Spencer's began developing ultra-low-cost ROMP in 2003
 - DARPA sought 48 " diameter in 2003, remains unproven in large vessels
 - compatibility with H₂ since tested, strength retained at cryogenic temp's
- Aerospace and Maritime applications, also energy terminals
- May make sense for less mass- and volume-constrained Rail

Future work:

- Full scale pressure vessel test program eliminates key risks proof of concept tests = hydrostatic burst, P+T cycling, and long duration (weeks) hydrogen permeation (P vs. time) site selection and preparation for explosive-potential tests build and destroy more pressure vessels
- Materials Research and Development efforts toughness vs. Temperature testing and improvement permeation tests on subscale vessels and mitigation layers stress rupture life vs. temperature testing
- Design and modeling efforts insulating tiles, acceleration loaded vessel suspension, length and diameter expansion isolation from container
- Regulatory initiatives: negotiate with regulators on cold safety
- Funding Initiatives: Joint DOE/DoT container field demo
- Industrial Partnerships: gas vendors, trailer integrators

Summary: We are demonstrating glass fiber vessels that minimize delivery cost through cold strengthening

- First batch of full-scale glass fiber vessels demonstrated manufacturability of all trailer processes and components
- Successfully burst tested subscale 3" vessels at 300 and ~170K seal design does not scale up, but composite performance within 2% of design at ambient burst pressure of 20,000 psi and > 15% over design in liquid acetone when seal leaked
- Found and fixed novel manufacturing problems
- Investigated materials properties and made beneficial changes
- Designed thermal management system for delivery trailer
- Optimized delivery model for \$/kg-H₂-delivered vs. P and T
- Identified development pathway for single large vessel delivery

