

Hydrogen Embrittlement of Structural Steels

Brian Somerday Sandia National Laboratories June 9, 2010

Project ID # PD025

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000

Overview

Timeline

- Project start date Jan. 2007
- Project end date Sept. 2015
- Percent complete 40%

Budget

- Total project funding (to date)
 - DOE share: \$700K
- FY09 Funding: \$150K
- FY10 Funding: \$150K

Barriers & Targets

- Pipeline Reliability/Integrity
- Safety, Codes and Standards, Permitting
- High Capital Cost and Hydrogen Embrittlement of Pipelines

Partners

- DOE Pipeline Working Group
 - Federal Labs: Sandia, Oak Ridge, Savannah River, NIST
 - Universities: Univ. of Illinois
 - Industry: Secat, industrial gas companies
 - Standards Development
 Organizations: ASME

Objectives/Relevance

- Why steel hydrogen pipelines?
 - Safety of steel pipelines well established (e.g., third-party damage tolerance)
 - Hydrogen pipelines safely operated under *static pressure*
- Demonstrate reliability/integrity of steel hydrogen
 pipelines for cyclic pressure
 - Address potential fatigue crack growth aided by hydrogen embrittlement
- Enable pipeline design that accommodates hydrogen embrittlement
 - Apply and optimize H_2 pipeline design code ASME B31.12
 - Emphasis in FY09-FY10 on measuring fracture thresholds and fatigue crack growth laws for X52 steel in H₂ gas

Approach

- Exploit unique capability for measuring fracture properties of steels in high-pressure H₂
 - Fracture properties serve as inputs into reliability/integrity assessment as specified in ASME B31.12 pipeline code
 - Milestone: Measure fatigue crack growth laws for X52 steel as function of loading frequency (75% complete)
 - Milestone: Measure fracture threshold for X52 steel as function of displacement rate (20% complete)
- Improve efficiency and reliability of test methods for steels in high-pressure H₂
 - Provide feedback to standards development organizations (e.g., ASME) through DOE Pipeline Working Group

Reliability/integrity assessment framework in ASME B31.12 requires fracture data in H₂

- Two fracture properties in H₂ needed
 - -Fatigue crack growth law
 - -Fracture threshold
- Reliability/assessment framework accommodates H₂ embrittlement

Fracture data in H₂ measured using specialized laboratory capability

Fracture threshold

Fatigue crack growth

Measured fracture properties of technologically relevant steel: API 5L X52

- Tested same X52 steel from DOE Pipeline Working Group tensile property round robin
 - Stakeholders (e.g., ASME) expressed interest in X52 steel
- Tensile properties
 - Yield strength: 62 ksi (428 MPa)
 - Ultimate tensile strength: 70 ksi (483 MPa)

Accomplishment:

Measured baseline fatigue crack growth law for X52 steel in 21 MPa H₂

 Results reveal transitions in da/dN vs ∆K trend that must be captured for measurements in H₂

Accomplishment:

Measurement of fatigue crack growth laws must consider effects of frequency

- Tests at 1 Hz yield non-conservative data at high crack growth rates
- Frequency selected must balance test efficiency (i.e., duration) and data reliability
- Results can help optimize test methods referenced in H₂ pipeline standard ASME B31.12

Fatigue crack growth laws can be used to evaluate reliability/integrity of X52 H₂ pipelines

 Life assessment framework in B31.12 allows limiting number of pressure cycles to be established

Collaborations

- DOE Pipeline Working Group (PWG)
 - Participants funded by DOE H₂ Program
 - Federal Labs: Sandia, Oak Ridge, Savannah River
 - Universities: Univ. of Illinois
 - Industry: Secat
 - Participants not funded by DOE H₂ Program
 - Federal Labs: NIST
 - Industry: energy and industrial gas companies
 - Standards Development Organizations: ASME
 - PWG meets up to 2 times/year for participants to report results and receive feedback
 - Activities coordinated among PWG participants
 - Example: Sandia and NIST coordinating testing of X52 steel in H₂

Future Work

Remainder of FY10

- Complete measurements of da/dN vs frequency for X52 steel in H₂ at lower fatigue crack growth rates
- Measure fracture threshold (K_{IH}) for X52 steel in H_2 as a function of displacement rate
- Measure fatigue crack growth law for X52 steel seam weld in $\rm H_2$

FY11

- Develop test methods for measuring the fracture properties of pipeline steel girth welds in H₂
- Measure the fatigue crack growth law for pipeline steel girth welds in H_2

Summary

- Measured fatigue crack growth laws allow evaluation of reliability/integrity of steel H₂ pipelines for cyclic pressure
 - Hydrogen embrittlement accommodated by measuring fracture properties in H₂ following ASME B31.12 pipeline design standard
- Measurements on X52 steel in H₂ show that fatigue crack growth rates depend on load-cycle frequency
 - Results can help optimize test methods in standards, i.e., enhancing test efficiency without compromising data reliability

