

Innovative Hydrogen Liquefaction Cycle

Paul Dunn, Martin Shimko Project # PD026 2010 DOE Merit Review Gas Equipment Engineering Corporation June 9, 2009

This presentation does not contain any proprietary, confidential, or otherwise restricted information

H2 Liquefier Development Program

GEECO:

Avalence:

MIT:

Timeline

Restart Date: Jan 2007 End Date: Sept 2011 Percent Complete: 75%

Budget

\$2.52M Project Funding: DOE: \$2.00M \$0.52M Contractor: \$161K Received in FY06 \$394K Received in FY07 \$587K Received in FY08 \$475K Received in FY09 \$288K Allocated for FY10

Barrier Addressed

High Cost and Low Efficiency of Hydrogen Liquefaction

Partners

Detailed Design Liquefier Fabrication System Testing System Integration Cycle Design Catalytic HXC Design **R&D Dynamic:** TBX Design and Fab

Refined Project Objectives

- Design a Practical H2 Liquefaction Cycle That Significantly Increase Efficiencies Complete Over Existing Technologies
- Identify, Design, and Test the Key Component – Continuous Catalytic In-Process Heat Exchanger
- Design a 50,000 kg/day Plant Using Low/No Risk Development Components Complete
- Document a Significant Reduction in the Total Cost of H2 Liquefaction at the Complete 50,000 kg/day Production Level

Designed and Modeled a Once-Through, H2 Liquefaction Cycle

- Independent He Reverse-Brayton Cooling Loops with Innovative Staging
- Catalytic Heat Exchangers
 H2 Wet Expander

30% EFFICIENCY INCREASE OVER PRESENT LARGE SCALE H2 LIQUEFACTION PLANTS

From 30% TO 44% OF CARNOT, or
 From 9.7 kWh/kg to 7.4 kWh/kg

SYSTEM "EQUIPMENT" COST ~40% OF H2A ESTIMATE

 Largely Conventional Component Use
 Development Risk and Cost Uncertainty Minimized

Continuous Catalytic Heat Exchangers Are The Key Undemonstrated System Component

Sub-Scale Pilot Plant Performance Example	η cycle	W net (kWh/kg)
Adiabatic Catalyst Beds	19.76	19.69
lsothermal Catalyst Beds	22.14	17.57
Continuous Catalytic Heat Exchangers	23.33	16.67

Шн

CHEX Selected For Demonstration Testing

CHEX Testing Goals

Perform Testing of CHEX at Cryogenic Temperatures Produce a Para-Ortho Measurement Devise

For These Temperatures (Completed)

Build and Test Sub-Scale CHEX

- >Adiabatic Test Article
- >Continuous CHEX

Validate Model Results

Demonstrate Practical, Scalable CHEX Design

Remaining Project Schedule

Remaining Tasks Revised to:

- Complete the Catalytic Heat Exchanger Demonstration Testing
- Refine the Compressor Design for the 50,000 kg/day System
- Complete Component Development and Produce Full Pilot Plant Demonstration only if Future Funds Allocated

PROJECT TIME LINE	2010								
	Мау	June	July	Aug	Sept	Oct	Nov	Dec	
Design CHEX (Heat Exchanger)									
Build Test Apparatusand Test Articles									
Test Adiabatic Test Article									
Refine Pilot Plant Design									
Test CHEX									
Evaluate and Report									

CHEX Test Apparatus

- Tests Verifying that the Selected Hydrogen and Helium Compressor Will Support the Planned Testing Was Completed
- The CHEX Test Article Configuration and Sizing Was Completed
- The Auxiliary Heat Exchangers for the Test Apparatus Were Designed
- > The Test Article "Cold Box" was Designed

He Compressor Test Results

The CHEX Test Article Design Was Completed

Problems with parallel plates...

- Difficult to manufacture reliable seals
 - between H2 and He passages
- Maldistribution due to variation in duct width
- \succ Large flat surfaces with large ΔP
- ➢Parallel pathways do not communicate with each other CATALYST

Solution: Develop tubular design

- ≻equal catalyst volume,
- stream-to-stream surface area, and
- helium stream cross-sectional area

Basic design

- Annular space filled with catalyst
- 8 parallel, helical counter-flow cooling passages (8-start helix)
- Characteristic dimension in catalyst approximately equal to parallel plate design

The Auxiliary Heat Exchangers for the Test Apparatus Were Sized

Sizing the Auxiliary Heat Exchangers (recuperators for the independent H2 and He loops).

- Choose a desired HX effectiveness
- Calculate required NTU
- ➤ Choose an acceptable ΔP/P and determine L and D

Geometry:

Coiled concentric tubes (to fit Dewar)

Results :

<u>H2 Recuperator</u> ε=0.85, NTU=4.96, UA=37.9 W/K, ΔP/P=0.01 Din=3.5 mm, Dout=5 mm, L=2.7 m <u>He Recuperator</u> ε=0.75, NTU=3, UA=27.4 W/K, ΔP/P=0.05

Din= 7.4 mm, Dout=10.5 mm, L=3 m

- ➤Use Existing Cryostat
- Sized to Accept Cryogenic Recuperators and Heat Exchangers
- Tubing and Instrumentation Will Pass Thru Cryostat Upper Lid

Plii

Plan For Remainder of 2009

≻Q2 '10

Finish Design and Build of Test Apparatus

Build Adiabatic Catalyst Bed

≻Q3 '10

Test Adiabatic Catalyst Bed

Design and Build CHEX

Identify Full Scale Compressor

≻Q4 '10

Test CHEX

Assess and Report

11117