

High-Capacity, High Pressure Electrolysis System with Renewable Power Sources

Paul Dunn and Martin Shimko, Avalence LLC DOE Merit Review, June 10, 2010

Project # PD029

This presentation does not contain any proprietary, confidential, or otherwise restricted information

ELECTROLYZER DEVELOPMENT PROGRAM Timeline Barriers Addressed

Start Date: May 2008 End Date: Sept 2011 Percent Complete: 30%

Budget

Project Funds: \$2.41M DOE: \$1.93M Contractor: \$0.48M FY 08 Funds: \$393K Spent FY 09 Funds: \$487K Spent FY 10 Funds: \$300K Allocated (Pending Go/No Go Gate) \$0K Spent

Capital Cost System Efficiency Renewable Power Integration

Partners

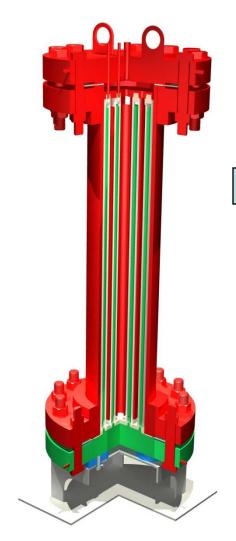
Avalence:LeadHyperComp:Composite WrappingHydrogen Energy Center:

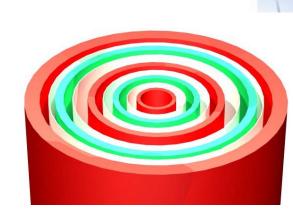
MaineOxy:

Installation Funding Revenue Operation

ELECTROLYZER DEVELOPMENT ORIGINAL PROJECT GOALS

- Achieving at Least a 15 X Increase in the Gas Production Rate of a Single High Pressure Production Cell
- Demonstrate the High Pressure Cell Composite Wrap Which Enables Significant Weight Reduction
- Build and Test a 1/10th Scale Pilot Plant
- Perform Economic Assessment for Full Scale Plant (300 kg/day, 750 kW) That Meets DOE 2017 Cost Target of \$3.00/gge




Design Approach For High-Capacity, High-Pressure Production Cell

- Maintain Cylindrical Pressure Boundary Configuration
- Increase the Diameter By Using a Composite Outer Wrap
- Place Multiple Electrode and Membrane Pairings Inside a Single Cell Body
- Electrodes Act as Two Sided Unipolar Electrodes

Nested Cell Design with Composite Overwrap (Overwrap not Shown)

- Nested arrangement, electrically in parallel
- Green anode (oxygen production)
- Red cathode (hydrogen production)

Project Challenges

Design and Fabrication

- Large Diameter Membrane Formation
- Membrane to Manifold Sealing
- Fluid and Power Penetrations
- Composite Wrapping "Heavy" Cylinder
- Process Control of a Multiple, High-Capacity Cell Array

Performance Demonstration

- Long-Term Operation at 6500 psi (O2 Side Purity)
- > Low/No Leakage Electrical Isolation Hoses at 6500 psi

DEVELOPMENT PROGRAM MILESTONES

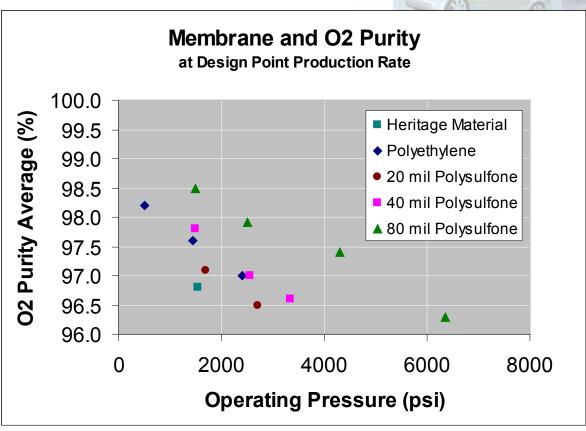
Project Milestones	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Description	Status
Determine a Manifolding and Sealing Arrangement for Nested Cell	Complete
1) H_2 and O_2 Gas Separation	12 7/23 20-
2) Electrical Connection to Electrodes	
3) Electrolyte Replenishment	
Determine Containment Penetration Size and Design	Complete
1) Compatible with Composite Wrapped Vessel Constraints,	
2) Support Cell Electrode Current Magnitudes (>1000 amp)	
3) H_2 and O_2 Gas Off-Take	
4) Electrolyte Replenishment	
Design a Functional Shape of Outer Metal Jacket For Dual Purpose:	Complete
 Outer Electrode's Inner Surface 	
Vessel Liner that is the Foundation for Composite Wrap	
Demonstrate the Performance of the Nested Cell Core so that Accurate Projections of	In Process
Energy Use can Be Integrated into the Cost Model	
Demonstrate the Ability to Implement a Composite Fiber Outer Wrap Over the Nested Cell	Not Yet Started
Core	
Produce a Pilot Plant Design For Use as a Basis for a Sound Economic Analysis of Plant	Not Yet Started
Fabrication and Operating Cost	
Demonstrate the Operation and Efficiency of the Pilot Plant	Not Yet Started
 Laboratory Testing at Avalence 	
Field Testing at NREL	
Have a Site Ready to Accept the Completed Plant for Commercial Operation	Not Yet Started
100 kW of Renewable Power in Place	
Sale or Use of the Plant Products Defined	

Significant Project Accomplishments

- 1) Identified and Tested Formable Sheet Membrane Material
- 2) Successfully Demonstrated Membrane Tube Forming and Seam Joining
- 3) Identified Vendor and Ordered 6500 psi Capable Electrical Isolation Hoses
- 4) Completed Design of Single Cell Test Article and Test Apparatus
- 5) Demonstrated 6500 psi Production on Small Capacity Cells

>Poly-Sulfone **Material Wrapped** Around Perforated **Tubular Form** > Proprietary Adhesive Used to Seal Overlapped Edges Vacuum Used to Maintain Membrane Shape **During Curing**

Demonstrated Membrane Sealing



Formed and "Glued" Tubular Membrane

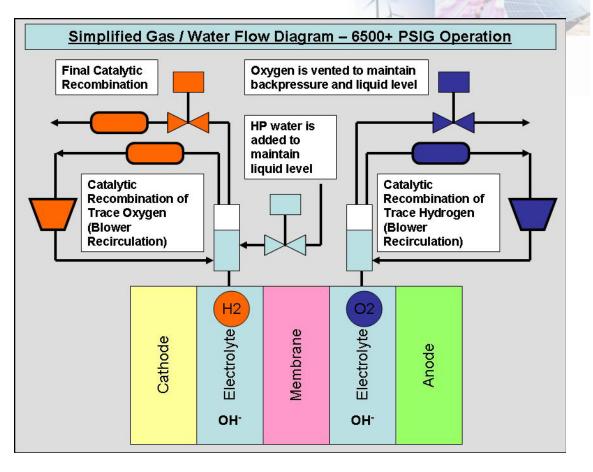
Demonstrated 6500 psi Operation

≻2 inch Diameter **Cells Used for** Testing **≻**Multiple **Membrane Materials Tested** ≻80 mil Thick PolySulfone **Membrane Performed "OK"** > Electrolyte **Requires Weekly** "Decompression" to Maintain Purity

Increasing Polysulfone 80 mil 67 kWh/kg Thickness Decreased Efficiency 40 mil 62 kWh/kg

2010 Project Focus

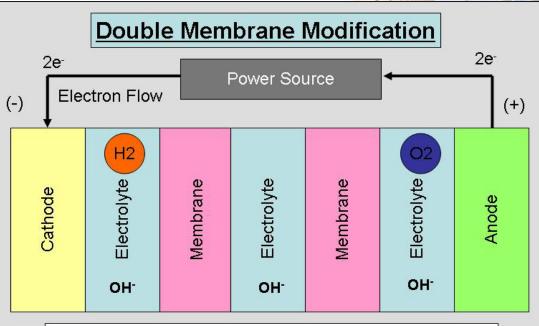
Meet Remaining Go/No Go Objective


- Demonstrate Large Diameter Cell Operation at 1000 psi
- Test Long-Term 6500 psi Operation Approaches
- Use Existing Small Cell Apparatus
- Purified Gas "Recirculation/Dilution" Approach
- Neutral Electrolyte Chamber Approach

> Recirculate **Post-Catalyst Gas** into Gas/Liquid **Separator Vessels** ➢ Recirculation Rate Will Set **Dilution Rate and** Therefore "Raw" Gas Purity Perform Initial Tests on Existing "Small-Scale" Cells

Long – Term 6500 psi Operating Approach I

Recirculation/Dilution With Purified Gas



➢Neutral Electrolyte **Region Gives** "Long" Dissolved **Gas Diffusion** Length >Use Thinner Membranes to Minimize **Resistance to Ion** Transport Perform Initial **Tests on Existing** "Small-Scale" Cells

Long –Term 6500 psi Operating Approach II

Neutral Electrolyte Chamber

Double Membrane with Center Electrolyte Circulation and Degasification (not shown) Still Provides for Transport of OH- While Reducing Concentration Gradient of Dissolved H2 and O2; Enabling Safe Higher Pressure Operation

Program Status/Future Plans

Original Effort (Key Technical Goals)

- Demonstrate 6500 psi Single Cell (Go/No Go)
- Build 6500 psi, 20 Cell Pilot Plant

Present Status

- Achieved 6500 psi Operation in Small Cells
 - Significant Program Effort
 - > Improved O2 Side Purity Margin is Desirable for Long Term Operation
 - Resolved 6500 psi Electrical Isolation Hose Issue
- Large Cell Design "Ready-to-Go"
 - Resolved Key Membrane Forming and Sealing Issues

Proposed Redefined Project Goals

- Demonstrate Large Diameter Cell Operation at 1000 psi (Go/No Go)
- Demonstrate Long-Term 6500 psi Operation
 - Test Recirculation and Neutral Buffer Approaches
- Build 6500 psi Pilot Plant
 - Reduce Number of Cells as Needed

Why Bother?

One Example: Baseload Firming 1/3 of the Available Power Converted to H2 1 Full Day Fuel Cell Power Stored

100 MW Installed Wind, 33 MW Electrolyzer (50 Units), 22,500 kg Storage, 25 MW Fuel Cell	Without H2 System	With H2 System
Annual Electrolyzer, Storage, Fuel Cell System Cost (20 Year Amortization)	-	\$1.3 MM
Annual Wind Turbine Installation Cost (20 Year Amortization)	\$7.5 MM	\$7.5 MM
Annual Operating, Maintenance, Refurbishment	\$1.5 MM	\$2.0 MM
Annual "Junk" Power Yield (35% Capacity Factor)	307 GWh	205 GWh
Annual On-Demand Power Yield (50% Efficiency)	-	51 GWh
Annual Value of "Junk" Power @ 3.5¢/kWh	\$10.7 MM	\$7.2 MM
Annual Value of "Peak" Power @ 15¢/kWh		\$7.6 MM
Annual Profit	\$1.7 MM	\$4.0 MM

Contact Information

<u>CEO</u>:

Anthony Della Volpe

Operations and Funding

ajd@avalence.com

<u>CTO</u>:

Paul Dunn

Technology Development

pmd@avalence.com

1240 Oronoque Road • Milford, Connecticut 06460 • Tel: 203-701-0052 • Fax: 203-878-4123 www.avalence.com -16-