

2010 Hydrogen Program Annual Merit Review Meeting

PEM Electrolyzer Incorporating an Advanced Low Cost Membrane

Monjid Hamdan Giner Electrochemical Systems, LLC June 10, 2010

Project ID# PD030

This presentation does not contain any proprietary or confidential information

Overview

Timeline

- Project Start: May 2008
- Project End: May 2012
- Percent Complete: 45

Budget

- Total Project Budget: \$2.49M
 - **DOE Share:** \$1.99M
 - □ **Cost Share:** \$0.51M

FY08 Funding

- DOE: \$650K
- FY09 Funding
 - DOE: \$233K
- FY10 Funding
 - DOE: \$550K

Barriers

Hydrogen Generation by Water Electrolysis

- G. Capital Cost
- H. System Efficiency

Targets

DOE TARGETS: Distributed Water Electrolysis							
Characteristics/units	2006	2012	2017				
Hydrogen Cost (\$/kg-H ₂)	4.80	3.70	<3.00				
Electrolyzer Cap. Cost (\$/kg-H ₂)	1.20	0.70	0.30				
Electrolyzer Efficiency %LHV	62	69	74				
(%HHV)	(73)	(82)	(87)				

Partners

- Parker Hannifin Corporation (Industry) System Development
- Virginia Tech University (Academic) Membrane Development

Collaborations

- 3M Fuel Cell Components Program (Manufacturer) NSTF Catalyst & Membrane
- Entegris Carbon Cell Separators

Project Objectives

Overall Project Objectives

- Develop and demonstrate advanced low-cost, moderatepressure PEM water electrolyzer system to meet DOE targets for distributed electrolysis.
 - □ Develop high efficiency, low cost membrane
 - Develop long-life cell-separator
 - Develop lower-cost prototype electrolyzer <u>stack</u> & <u>system</u>
 - □ Demonstrate prototype electrolyzer system at NREL

FY09-2010 Objectives

- Fabricate Scaled-up Stack Components
 - □ DSM (290-cm²)
 - □ Cell-Separators (290-cm²)
- Assemble and operate short stacks at GES for 1000 hours
- Complete system CDR
- Begin fabrication of deliverable system

	Go/No Go Decision Points	Progress Notes	% Complete
Membrane	Demonstrate DSM membrane performance comparable to or better than that of Nafion [®] 1135 at 80 C	Performance DSM > Nafion [®] 1135 = Nafion [®] 112	100% Mar-09
	Demonstrate electrolyzer lifetime with DSM membrane (80 C ≥ 1000 hrs)	Completed 1000 hrs @ 80°C. Testing indicates low membrane degradation rate, high life expectancy	100% Mar-09
	Scale-up DSM membrane to 290cm ² Evaluate in short stack for 1000 hours	DSM substrates have been scaled-up to 290 cm ² . Cost of laser-drilled substrates reduced by 50%. Alternative chemically-etched DSM material identified for further cost reduction	30%
Cell Separator	Demonstrate performance comparable to dual- layer Ti separator	Life testing and H ₂ -embrittlement tests confirm longevity of Carbon/Titanium cell-separators	100% May-09
	Scale-up Carbon/Ti cell-separator Evaluate in short stack for 1000 hours	Carbon materials scaled-up. Cell-separator fabrication initiated	20%
System Development	Complete preliminary design review	Completed: P&ID, PFD, control diagrams, safety review, system layout and packaging drawings	100% Dec-09
	Complete critical design review Begin system assembly	Currently assembling major subsystems for bench-top evaluation (this includes H ₂ -dryer)	20%

Membrane Development Approach

DSM Membrane-GES

- PFSA ionomer incorporated in an engineering plastic support
 - High-strength
 - High-efficiency
 - No x-y dimensional changes upon wet/dry or freeze-thaw cycling
 - Superior to PTFE based supports

Bi-Phenyl Sulfone Membrane-VT

- Hydrocarbon Membranes
 - Inexpensive starting materials
 - Trade-off between conductivity and mechanical properties

Alternative Membranes-3M

□ 3M's PFSA (850EW) Membrane

DSM Supports

Bi-Phenyl Sulfone, H form (BPSH)

Approach is to optimize membrane ionomer EW and thickness, scaleup fabrication methods and techniques, and improve costs

Requirements

- □ Gas-impermeable (separates H₂ and O₂ compartments)
- High electrical conductivity and high surface conductivity
- □ Resistant to hydrogen embrittlement
- □ Stable in oxidizing environment
- □ Low-Cost

Legacy Design

 Multi-Layer piece consisting of Zr on hydrogen side and Nb on oxygen side

Single or Dual-Layer Ti separators have been used

- □ Ti subject to hydrogen embrittlement
- □ Lifetime limited to <5000 hours, depending on pressure and operating conditions

Approach

- Develop a new low-cost dual-layer structure
 - Evaluate methods of bonding dissimilar metal films
 - Evaluate non-metal substrate with conductive coating

Hydrogen Embrittlement: A real problem in electrolyzer separators!

Designing Low Cost Electrolyzer Stack and System

Objectives

- □ Reduce BOP capital cost
- □ Reduce BOP power consumption
- Increase stack active area
- □ Improve safety and reliability
- Design for high-volume manufacturing

Approach

- Team with large volume commercial manufacturer (domnick hunter group of Parker-Hannifin)
- Redesign system to eliminate or replace costly components
- Laboratory evaluation of lower-cost components and subsystems
 - Design & test high efficiency H₂ dryer
- Develop higher efficiency power electronics

System Design Specifications

Production Rate	0.5 kg H ₂ /hr	
Operating Pressure	300-400 psid ; H ₂ 300-400 psig; O ₂ atm	
Operating Temperature	50-90°C	
Membrane	DSM-PFSA	
Stack Size	290 cm²/cell, 28 Cells	
Stack Current Density	1500-2000+ mA/cm ²	

Membrane Progress

- Membrane Performance: BPSH-35 > DSM(1100EW) > Nafion[®] 1135
- Performance Milestone (Mar-09)
 - □ Performance of 3-mil Laser-Drilled DSM (PFSA-1100EW) > Nafion[®] 1135

Nafion[®] is a registered trademark of E.I. du Pont Nemours and Company

Membrane Progress

Supported Membrane

DSM™: Laser-Drilled vs. Chemically-Etched

Membrane Progress

Life Testing

Membrane Performance

(3-mil Laser Drilled DSM PFSA(1100EW)

- □ Voltage:1.71-1.73V
- □ Efficiency: 75.1% LHV (88.8% HHV)
- Completed 1000 Hour Life Milestone
- Membrane Degradation (Estimated Lifetime)
 - F ion Release Rate: 3.7 μg/hr (<10 ppb)</p>
 - DSM -1100EW Stabilized Ionomer: ~55,000 hours
 - □ DSM 850EW Non-Stabilized Ionomer: <20,000 hours
 - \square BPSH-35: Life test fail due to H₂X-over (pinhole detected)

Membrane/Catalyst Evaluations

Membrane Evaluation

- □ Membrane Performance BPSH-35 \cong 3M \cong DSM \cong N112 > N1135
- 3M 850EW (Stabilized ionomer)

Cell-Separator

Separator Fabrication & Evaluation

Carbon/Ti

- Properties
 - \Box Conductivity (S/cm) > 300
 - Low Porosity
 - POCO Pyrolitic Graphite (Surface Sealed)
- Evaluation (500 hrs)
 - Water Quality: 14.7 MΩ
 - No loss in carbon thickness
 - □ Hydrogen embrittlement analysis
 - Carbon/Ti: 64ppm H₂
 - □ Life Time Estimate: >60,000 hours
 - Dual Layer Ti: 1105 ppm H₂
 - □ Life Time Estimate: <5,000 hours

Performance Milestone (May-09)

Preliminary System Design

- □ P&ID, PFD completed
- Series of workshops completed with manuals covering:
 - Hydrogen Safety& Response Plan
 - System Training & Operation
 - System Manufacturing
 - Failure Modes and Effects Analysis (FMEA)
- System Layout Complete
- Component evaluations
 - Water Pump: (80% eff.)
 - Multistage centrifugal
 - H₂-Dryer: (>97% eff.)
 - Full scale prototype designed and built
 - Rectifier: (93-95% eff)

Negligible IV							
Class D							
Class D							
nt Status							
0							
0							
32							

 System design improvements and the use of a Dome eliminate the highest severity cases

D

 Highest severity cases related to hydrogen ignition (Class A), & electrocution (Class B)

D

3

3

Codes Pertinent to Hydrogen Refueling System

Preliminary Stack Design

Electrical Connections

TTTTTT

- Pressurized Dome
- N₂ pressure 500 psig monitored electronically
- Dome material: carbon steel
- Design Failure Modes and Effects Analysis indicates highest degree of safety
- Dome can house largest stack envisioned (61-cells); smaller stacks can always fit in this Dome

Stack Design Includes •Increased active area (290cm²) •Reduced catalyst loadings (Future reductions w/ 3M catalyst) •Reduced Part Count •Pressure Pad: Subassembly eliminated •Molded Thermoplastic Cell Frame

Preliminary System Design (System Layout)

Projected H₂ Cost

Specific Item Cost Calculation Hydrogen Production Cost Contribution					
H2A Model Version (Yr)	Rev. 2.0 (FY2009)		Rev. 2.1.1 (FY2010)		
Capital Costs	\$0.86		<\$0.79		
Fixed O&M	\$0.53		<\$0.49		
Feedstock Costs \$1.54 min. @ 39.4 kWh _e /kg-H ₂	\$1.86 (DSM)		\$1.86 (DSM)		
Byproduct Credits	\$0.00		\$0.00		
Other Variable Costs (including utilities)	\$0.02		\$0.01		
Total Hydrogen Production Cost (\$/kg) (Delivery not included)	3.28		3.15		
Delivery (H2A default)	1.92		1.80		
Total Hydrogen Production Cost (\$/kg)	5.20		4.95		

H2A Model Analysis Forecourt Model

- Design capacity: 1500 kg H₂/day
- Assume large scale production- costs for 500th unit
- Assume multiple stacks/unit
 - Low-cost materials and component manufacturing
- 333 psig operation. H₂ compressed to 6250 psig
- Operating Capacity Factor: 70%
- Industrial electricity at \$0.039/kWhr

Future Plans for FY2010-11

Parker

- Continue fabrication & evaluation of key components (bench top)
- Critical design review
- Fabricate deliverable system
- Operate system
- - Fabricate scaled-up 'short stack' prototype (0.1kg-H₂/hr)
 - □ DSM (290-cm²)
 - □ Cell-Separators (290-cm²)
 - Operate short stacks at GES for 1000 hours
 - Assist in system start-up at Parker facilities
 - Receive and install operating system at GES
 - Add cells to stack to increase capacity
 - Verify stack/system performance
 - Prepare for shipment to NREL
- - One last round of membrane fabrication
 - Evaluate 100 hour durability

Significant progress has been made in Membrane, Stack, and System development

Demonstrated membrane reproducibility and durability

- Demonstrated DSM membrane performance better than that of Nafion[®] 1135 at 80°C
- Demonstrate DSM membrane lifetime at 80°C for 1000 hours
 - □ Expected DSM membrane lifetime in the range of 50,000 hours
 - BPSH membrane failed life-testing

□ Cell Separator Development:

- Demonstrated performance comparable to dual-layer Ti separator in 160-cm² electrolyzer
- Demonstrated significantly reduced hydrogen embrittlement with carbon/Ti separators
 - □ Expected cell-separator lifetime in the range > 60,000 hours
- □ Scaled-Up Stack Design
 - Completed preliminary stack design review
 - Utilizing low cost components

□ System Development:

- Completed preliminary system design review
 - □ Piping & Instrumentation Diagrams (P&ID) and Process Flow Diagram (PFD)
 - □ FMEA & Safety Reviews
 - System Layout and Packaging