

Development and Optimization of Cost Effective Material Systems For Photoelectrochemical Hydrogen Production

Eric W. McFarland
Department of Chemical Engineering
University of California, Santa Barbara
June 7, 2010

Project ID # PD034

Overview

Timeline

- Start date September 1, 2004
- End date May 31, 2010
- 95% Complete

Budget

- Total project funding through FY 08
 - DOE share \$ 894k
 - Contractor share \$ 223k
- Funding for FY09 \$0
- Funding for FY10 \$0

Barriers

Technical Barriers Addressed

- (Y) Materials Efficiency
- (Z) Materials Durability
- (AA) PEC Device
- (AB) Bulk Material Synthesis

Technical Targets

2013 DOE PEC

- Solar-to-Hydrogen Conversion Efficiency >8%
 - Bandgap ~ 1.7-2.2 eV
- Lifetime > 1000 hours

UCSB

 Scalable to produce hydrogen at a cost less than PV-electrolysis

Relevance

There are no known material systems that are sufficiently efficient, inexpensive, and massively scalable that might realistically be used for the large scale, cost-effective production of hydrogen, or any chemical fuel, from sunlight.

Objectives and Tasks Investigated in 2010

- Task #1. With a focus on abundant and non-toxic elements, develop improved materials for solar photon absorption using high throughput methods and new syntheses.
- Task #2. Utilize high-throughput screening to identify candidate materials with a threshold efficiency and stability that, with optimization, might meet the DOE performance and stability targets.
- Task #3. Explore the effects of morphology on the PEC material system efficiency making use
 of nanostructures to minimize charge carrier path lengths and maximize reactive surface
 area.
- Task #4. Explore processing and synthesis parameters to optimize efficiency through increased conductivity and minimized charge trapping and surface recombination of selected materials.
- Task #5. Identify and minimize electrokinetic limits by synthesis of appropriate electrocatalysts compatible with the host, electrolyte, and reactant/product properties.
- Task #6. Develop a complete, "photoelectrochemical unit", combining material absorption, charge transport, stability, and electrokinetic design features.
- Tasks #7, #8, and #9: Evaluate conceptual model reactor systems, theoretical and practical economic potential of alternative redox reactions, estimate hydrogen production costs.

Approach/Selection Criteria

Material-Class Synopsis Iron Oxide

promise

- Bandgap ~ 2 eV (40% solar light absorption).
- Abundant and inexpensive
- High Stability in Electrolytes (pH>3)

- Carrier Transport
- Valence Band Edge
- Water Oxidation Kinetics

challenges

Low optical absorption

- Higher valence dopants (Pt, Mo, Cr, Ti): increased IPCE by 10x
 - → n-doping, increased carriers, increased mobility and conductivity
- Isovalant substitutions with large cation size differences (AI): increased IPCE
 - → strain, increased Fe-d overlap, increased hoping conduction
- No significant change in absorbance or effective gap with any dopant.
- Many dopants improved efficiency, but, best zero bias performance still more than an order of magnitude too low; iron oxide will not work for water splitting.

Ti Doped Hematite Thin Films:

Morphologies, Crystallization, and IPCE in 1M NaOH

	Flowrate Fe(CO) ₅ (sccm)	Flowrate TiCl ₄ (sccm)	Flowrate Oxygen (sccm)	Hotplate Temp (°C)	min	XPS Ti %
1	40	0	490	500	1	0.00
2	40	10	490	500	1	0.78
3	40	16	490	500	1	1.42
4	40	18	490	500	1	2.38
5	40	20	490	500	1	7.17
6	40	30	490	500	1	35.0

Annealing decreased the trap state density, enhancing the IPCE of hematite at low bias

- ❖ Feature size increases with Ti%
- Morphologies of doped hematite are different with different Ti%

2 ⊖ (degree)

❖All thin films show oriented crystallography

Ti: Doped (Ti%=0.78) Hematite Synthesis and Performance

Thermal Couple 350-400 °C

IPCE of CoF₃ Surface Modified Ti:Fe₂O₃ Thin Films Using Glucose as Reductant; Comparison with the Best E-chem Sample

Hematite Performance & Device Quality

Comparison of onset potential and open circuit voltage of hematite thin films by electrodeposition and electronbeam evaporation (E-Beam) method.

E-chem (un-doped)

E-chem (Mo doped)

E-beam (un-doped)

J. Phys. Chem. C, **2008**, 112 (40), 15900–15907 Chem. Mater. **2008**, 20, 3803–3805

Shunt Resistance and Pinholes – Device Quality

O₂ from photoelectrolysis

O₂ from electrolysis on Pt and hematite Fe₂O₃ phosphate buffer pH = 7Photocurrent density (mA/cm2) 6.0 -Quartz wafer Dark - Fresh Dark - Holes H₂O oxidation Hematite Light - Fresh on Pt Light - Holes 4.0 2.0-Semiconductor Device electrode 0.5 1.0 1.5 2.0 0.0 Bias (V vs. Ag/AgCI) Solar cell

Device quality or intrinsic material properties?

No Significant Decrease In Photoelectrode Efficiency.

- ❖On semiconductor electrode, no oxidation occurred on 2.0 V vs. Ag/AgCl
- ❖With pinholes punched on semiconductor electrode, O₂ evolved at 1.2 V vs. Ag/AgCl

Delafossite Material-Class Synopsis

promise

- 3B group have direct band gap.
- Effective masses are small, so conduction should be better.
- Alloying group 3A and 3B could be used to reduce the band gap
- Many possible substitutions for the R group in CuRO₂
- > Possibly abundant and inexpensive

challenges

- Stability under illumination
- High recombination rates
- Valence and conduction Band position
- Water Oxidation Kinetics

Mesoporous Delafossite and Spinel Structures

----variety of new materials synthesized

CuCrO₂, Ar, 1000 °C SA=90.1 m²/g CuCr₂O₄, Air, 950 °C, SA = $68.8 \text{ m}^2/\text{g}$

PEC Hydrogen Production From Slurry Delafossite: Schematics and Results

- ■Mg:CuCrO₂ and CuCrO₂ are still active after 100 hours reaction.
- Mesoporous structures are more active than bulk CuCrO₂
- ■Although improvements noticed, all IQE < 0.1%

BET Surface area:

Bulk: 0.298 m²/g

Mesoporous: 63.3 m²/g

Mg Doped Mesoporous: 53.7 m²/g

Material-Class Synopsis Phosphides

promise

challenges

- ➢ Bandgap ~ 0.8 2.0
- Several known with very high internal quantum efficiency (e.g. GaP, InP).
- Intrinsically good opto-electronic properties

- > Stability
- Valence Band Edge
- Water Oxidation Kinetics

Approach to Phosphides

- Investigate InP as model system to understand and improve stability.
- Create high-throughput methods for making mixed oxides then use subsequent processing to form phosphides.
- Investigate alternative redox couples for energy conversion and storage in which phosphides are stable.

Phosphides

(start with an efficient material and make it more stable)

Easy to make

- (1a)M_xO_v +H₃PO₄ @500°C in Air; ***OR***
- (1b) $Na_6 [H_x M_v O_z] + NH_4 HPO_4 \rightarrow MPO_x + NH_4 OH + NaOH + H_2 O$
- (2)Reduction in H₂ @ 600 900° C

Easy to break

- Anodic dissolution:
 - $Zn_3P_2 + 6H_2O \stackrel{H^+}{\rightarrow} 2PH_3 + 3Zn(OH)_2$

1)Core/shell structure

FeP

InP

 Zn_3P_2 Ni_2P

MoP

X-Ray Diffraction of Powder Phosphides From

Materials Engineering: Mixed Metal Phosphides

Modified Synthesis:

Goal:

- (1)Narrow GaP band gap (2.24eV) for efficient capture of solar spectrum.
- (2)Improve stability over narrower single metal phosphides (Fe, W, Mo, etc.)

Work to Come: Investigation of the parameter space that includes partial Ga substitution by metals including Fe, Mo, W, Zn, Ni; and partial P substitution by Sb.

Variation of Fermi level position vs. Ev and Ec with doping density for p and n-InP

Pt Deposition on p-InP Surface

1.6mM H₂PtCl₆, 45 mW/cm² -0.35 V vs. Ag/AgCl →Pt nanoparticles 00000 → p-InP Area with → AuZn Ohmic contact, 30+100 nm deposited → Pt layer 500 nm Current-Potential (I-V) response of p-InP (with various doping densities) with photoelectro-deposited Pt and Au/Zn contact recorded in 0.5 M HI/NaClO₄ hotocurrent (mA/cm²) p-InP (e18) p-InP (e17) p-InP (e16) 0.05 Cell voltage (V)

3X10¹⁶ (Zn/cm³) p-InP has the best performance

PEC Performance of Low Doped (E16) p-InP with Ohmic Contact in 0.5 M HI/NaClO₄ under Zero Bias

❖Zero bias (2 electrode IPCE for hydrogen production from HI ~40% across abs. band.

Direct H₂ bubbling was observed on free sample.

Candidates of Redox Couples and Proposals for Slurry System Using p-InP

Br and I dissolve many noble metals, such as Au. Thus, other candidates that allow presence of Au-Zn layer are to be sought.

- Alloy nanoparticles
- Pt Nanoparticles
- ❖n-InP active for HBr splitting
- ❖p-InP active for HI splitting

Schematic Diagram of Fuel Production from Biomass including Solar H₂/Br₂ Recycling System

Figure 1. Project Design Schematic1

Renewable Energy

- 1. Biomass → Methane
- 2. Methane + $Br_2(I) \rightarrow Gasoline + HBr(I)$
- 3. HBr + Sunlight \rightarrow H₂(g) + Br₂(l)

<u>Reasons</u>

- Higher conversion efficiency
- Less energy wasted
- •H₂(g) produced

Photoelectrochemical (PEC) Nanoreactor Design

Back-Reaction Range, Various Conditions

❖Cyclic Voltammetry (scan #5), 3M HBr, two-compartment electrochemical cell glassy carbon working electrode, complexing agent: PEG-8000, scan range: 0 to -0.9V
❖Addition of PEG significantly restrains the back reaction of Br-/Br₂

Pt vs. Cr_2O_3 coated Pt in 0.5M Na_2SO_4 , pH = 3.6 Cr_2O_3 layer has eliminated O_2 reduction

Summary

New PEC Materials (Tasks 1-2)

Oxides:

- Iron Oxide: We have substituted over 32 different "dopants" at several concentrations into hematite. Significant improvements were often observed, however, none of the magnitude required to give reason to pursue iron oxides further.
- Theory inspired synthesis and characterization of CuMO₂ Delafossite type oxides was completed for M=Cr,Fe,Ga,La. All had poor PEC performance.
- No oxide semi-conductor has yet been shown to be a practical candidate for hydrogen production by PEC.

Non-oxides:

- Initial work with phosphides shows InP to have extremely high IQE and IPCE for hydrogen production using oxidants other than water.
- Initial syntheses of new phosphides from oxides in format for high-throughput testing promising.

Surface Passivation and Electrokinetics (Tasks 3-6)

- Surface integrity (cracks and pinholes) less of a concern than other factors.
- Pt electrocatalysts may be photoreduced on p-type phosphides after synthesis.
- Passivation of phosphide surface with stable oxides permeable to hydrogen may be used to block back reaction.

New Systems and Technoeconomics (Tasks 7-9)

 Intial exploration of hydrogen production from HX haloacids coproduced with biogasoline in a biomethane process using X₂ halogens as a methane activating agent is promising and allows use of more efficient PEC materials.

Future Work

- Synthesis and Screening of New Materials and Structures:
 - 2010 Focus Phosphides
 - High-throughput screening and selected physical, electronic, and photoelectrochemical characterization of phosphides made from oxides.
 - Solution phase synthesis of p-n junctions, Cu(M)O₂/TiO₂
- New Redox Systems:
 - Develop slurry based system stable in HBr for production of H_2 and Br_2
 - Integrate into biomethane based fuel producing system.

Collaborations

- DOE H₂ Program
 - Directed Technologies (Participated in PEC System Analysis)
 - Standard PEC testing group discussion
 - Yanfa Yan, NREL (Theoretical Calculations)
 - Eric Miller, University of Hawaii (Electrocatalysts for WO₃)
 - Clemens Heske, UNLV (Characterization of Fe₂O₃)
 - Tom Jaramillo, Stanford (round-robin testing)
- M. Gräztel, Ecole polytechnique fédérale de Lausanne (Fe₂O₃)

