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Overview

Barriers
Technical Barriers Addressed
(Y) Materials Efficiency
(Z) Materials Durability
(AA) PEC Device
(AB) Bulk Material Synthesis

Timeline

« Start date September 1, 2004
 End date May 31, 2010
 95% Complete

Budget Technical Targets
2013 DOE PEC
« Total project funding through FY 08 » Solar-to-Hydrogen Conversion
11 o)
— DOE share $ 894k Efficiency >8%

— Bandgap ~ 1.7-2.2 eV
— Contractor share $ 223k . Lifetime > 1000 hours

« Funding for FY09 $0 UCSB

»  Funding for FY10 $0 « Scalable to produce hydrogen at
a cost less than PV-electrolysis



Relevance

There are no known material systems that are sufficiently efficient, inexpensive, and massively
scalable that might realistically be used for the large scale, cost-effective production of
hydrogen, or any chemical fuel, from sunlight.

Objectives and Tasks Investigated in 2010

« Task #1. With a focus on abundant and non-toxic elements, develop improved materials for
solar photon absorption using high throughput methods and new syntheses.

« Task #2. Utilize high-throughput screening to identify candidate materials with a threshold
efficiency and stability that , with optimization, might meet the DOE performance and stability
targets.

« Task #3. Explore the effects of morphology on the PEC material system efficiency making use
of nanostructures to minimize charge carrier path lengths and maximize reactive surface
area.

« Task #4. Explore processing and synthesis parameters to optimize efficiency through
increased conductivity and minimized charge trapping and surface recombination of selected
materials.

« Task #5. Identify and minimize electrokinetic limits by synthesis of appropriate
electrocatalysts compatible with the host, electrolyte, and reactant/product properties.

» Task #6. Develop a complete, “photoelectrochemical unit”, combining material absorption,
charge transport, stability, and electrokinetic design features.

« Tasks #7, #8, and #9: Evaluate conceptual model reactor systems, theoretical and practical
economic potential of alternative redox reactions, estimate hydrogen production costs.
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Material-Class Synopsis
Iron Oxide

promise challenges
» Bandgap ~ 2 eV (40% solar light » Carrier Transport
absorption). > Valence Band Edge
» Abundant and inexpensive » Water Oxidation Kinetics
' ility i >
» High Stability in Electrolytes (pH>3) % Liow optical absorption
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Higher valence dopants (Pt, Mo, Cr, Ti): increased IPCE by 10x

- n-doping, increased carriers, increased mobility and conductivity

Isovalant substitutions with large cation size differences (Al): increased IPCE

-> strain, increased Fe-d overlap, increased hoping conduction

No significant change in absorbance or effective gap with any dopant.

Many dopants improved efficiency, but, best zero bias performance still more
than an order of magnitude too low; iron oxide will not work for water splitting.




Ti Doped Hematite Thin Films: _

Morphologies, Crystallization, and
IPCE in 1M NaOH i e T

Flowrate Flowrate Flowrate Hotplate min XPS

Fe(CO)s TiCl, Oxygen Temp Ti %
(sccm) (scem) (scem) °0)
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the IPCE of hematite at low bias crystallography



Ti: Doped (Ti%=0.78) Hematite Synthesis and Performance
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IPCE of CoF; Surface Modified Ti:Fe,O; Thin Films Using Glucose as
Reductant; Comparison with the Best E-chem Sample
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Hematite Performance & Device Quality

E-chem: Pt doped E-chem: Mo doped
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J. Phys. Chem. C, 2008, 112 (40), 15690015907
Chem. Mater. 2008, 20, 3803-3805




Shunt Resistance and Pinholes — Device Quality

O, from photoelectrolysis

o

0© o O, from electrolysis on Pt and hematite

Pt
Ti

Quartz wafer

Hematite

Yio Ve +
[ v
Y Device
1 |
H_J
Solar cell

Device quality or intrinsic material
properties?

No Significant Decrease In
Photoelectrode Efficiency.

phosphate buffer pH =7
Dark - Fresh

6.0

Dark - Holes : ;
. Light - Fresh H,O oxidation
— Light - Holes on Pt
4.0- -7

2.0

Semiconductor
0.0 4o . ' . A electrode
0.0 0.5 1.0 1.5 2.0

Bias (V vs. Ag/AgCl)

Photocurrent density (mA/cmz2)

++On semiconductor electrode, no oxidation
occurred on 2.0 V vs. Ag/AgCl

s*With pinholes punched on semiconductor
electrode, O, evolved at 1.2 V vs. Ag/AgCl



Delafossite
Material-Class Synopsis

promise

challenges

3B group have direct band gap.

Effective masses are small, so
conduction should be better.

Alloying group 3A and 3B could be
used to reduce the band gap

Many possible substitutions for the
R group in CuRO,

» Possibly abundant and inexpensive

» Stability under illumination
» High recombination rates

» Valence and conduction Band
position

» Water Oxidation Kinetics




Mesoporous Delafossite and Spinel Structures
----variety of new materials synthesized

o3 T -.-

CuCrO,, Ar, 1000 °C SA=90.1 m?/g
CuCr,0,, Air, 950 °C, SA = 68.8 m?/g



PEC Hydrogen Production From Slurry Delafossite:
Schematics and Results

/ IR Filter—Water tank

] ~N
s I \\@/
1000W FV-SL 1000 Bulb

~N

Turn table and Stir plate

\

B B e -
_)I_)

EMg:CuCrO, and CuCrO, are still active after 100

hours reaction. BET Surface area:
B Mesoporous structures are more active than bulk Bulk: 0.298 m*/g
CuCrO, Mesoporous: 63.3 m*/g

B Although improvements noticed, all IQE < 0.1% Mg Doped Mesoporous: 53.7 m*/g



Material-Class Synopsis

Phosphides
promise challenges
» Bandgap ~ 0.8 — 2.0 » Stability
» Several known with very high internal » Valence Band Edge
quantum efficiency (e.g. GaP, InP). > Water Oxidation Kinetics
» Intrinsically good opto-electronic
properties

Approach to Phosphides

* Investigate InP as model system to understand and

improve stability.

* Create high-throughput methods for making mixed oxides
then use subsequent processing to form phosphides.

* Investigate alternative redox couples for energy
conversion and storage in which phosphides are stable.




Phosphides

(start with an efficient material and make it more stable)

L.l Easy to make

(12)M,0, +H;PO, @500°C in Air; *OR*

(1b) Nag [H,M,0,] + NH,HPO, > MPO, + NH,OH +NaOH +H,0
(2)Reduction in H, @ 600 — 900° C

Easy to break

Anodic dissolution:
ZnsP, + 6H,0 H 2PH; + 3Zn(0OH),

Strategy - keep them safe

1)Core/shell structure
2)Noble Metal surface enhancement

1

FeP InP  Zn,P, Ni,P WP MoP




Intensity(counts)
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X-Ray Diffraction of Powder Phosphides From
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Materials Engineering: Mixed Metal Phosphides

Modified Synthesis:

L e

bl el e A ,-\
; ; ovicaea)) + i 1 air ~stnNn
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GaM,,,0, + H,PO, > Ga,M,,,,PO, [@500°C in Air ~20h)
Ga,M; PO, + H, > Ga,M 4P + H,0
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Goal:

(1)Narrow GaP band gap (2.24eV) for efficient capture of solar spectrum.
(2)Improve stability over narrower single metal phosphides (Fe, W, Mo, etc.)

Work to Come: Investigation of the parameter space that includes partial Ga
substitution by metals including Fe, Mo, W, Zn, Ni; and partial P substitution by Sb.



Depl layer thick (nm)

Variation of Fermi level position vs. Ev and Ec
with doping density for p and n-InP
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Pt Deposition on p-InP Surface

1.6mM H,PtClg, 45 mW/cm? -0.35 V vs. Ag/AgCI

——>Pt nanoparticles
AuZn Ohmic contact, 30+100 nm E

—_ Pt.
— Pt layer 500 nm deposited

Current-Potential (I-V) response of p-InP (with various
doping densities) with photoelectro-deposited Pt and
Au/Zn contact recorded in 0.5 M HI/NaCIO,

— p-InP (e18)

Photocurrent (mAjcm?)
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3X10'6 (Zn/cm3) p-InP has the best performance



PEC Performance of Low Doped (E16) p-InP with
Ohmic Contact in 0.5 M HI/NaClO, under Zero Bias
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Candidates of Redox Couples and Proposals
for Slurry System Using p-InP

_0.35V Br-and I- dissolve many noble metals,
such as Au. Thus, other candidates
oV H,/H,0 that allow presence of Au-Zn layer are
0.09V ol s,0,2/5,0,>  to be sought.
0.36v W [Fe(CN).J*/ [Fe(CN) ]+
----------------------------------------------- MnO,/MnO,> 2H™ s
0.77V  —ffmmmmmmmm e Fe3*/Fe?* 4 R
1.07v MOV Br-/Br, 2 ht
h* — o)
1.23V 0,/H,0
12 35 .
p-InP in 0.5 M HI Alloy nanoparticles
<g 10 ] : :
é N N~ n-InP in 0.5 M HBr Pt Nanoparticles
‘g 6] ;5-
3 4 o] <n-InP active for HBr splitting
g | g “p-InP active for HI splitting
0 00 ' SIO 160 1%0 ' 260 ' 2;0 ' 360 ' Béﬂ
0 50 100 Time (s)

Time (s)



Schematic Diagram of Fuel Production from
Biomass including Solar H,/Br, Recycling System

» i
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» v LY )
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g digestor
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10 liters/day - - - | l[ - ;ZIK*“' il ]-— Y 800 moles/day
100 moles/day e | ~ =

COUPLING BROMINATION
REACTOR REACTOR

Figure 1. Project Design Schematic’

Renewable Enerqgy Reasons
1. Biomass - Methane *Higher conversion efficiency
2. Methane + Br,(l) > Gasoline +HBr(l) *Less energy wasted

3. HBr + Sunlight 2> H,(g) + Bry(l) *H,(g) produced



Photoelectrochemical (PEC) Nanoreactor Design

Hydrogen
permeable layer,
impermeable to Br,

Surface Passivation Layer

Electrochemical Reactions

Hy o ops bk
2H* IPhotogatal’Vs S Cathodic:
o b h\ 2H* (aq) + 2e- > H, (9)
( Metal M
electrocatalyst] ZBr'(aq) > 2e + Br2 (I)

Br,
HBr
1
PEC Nano-patrticle
Back-Reaction :
Br,(l) + 4H*(aq) + 4e- > 2HBr (1)

Comp|exing agent + Br2 9 Complexe d S >
Br, for easy extraction Slurry Reactor Br,




Back-Reaction Range, Various Conditions

HBr only
HBr + 1ml Br2 + 5,10,15g PEG-8000

A

/

Br,

HBr + 1ml Br2 + 1g PEG-8000

' \0---3:- -Br ===
Add—==—!——; 32C/ '
Add '

HBr + 1ml Br2

-2.549

r
_
) |?,aa> T
-
5
D)
W

08 06 .04 -0.2
Ewe/V vs. SCE

s Cyclic Voltammetry (scan #5), 3M HBr, two-compartment electrochemical cell glassy
carbon working electrode, complexing agent: PEG-8000, scan range: 0 to -0.9V
“*Addition of PEG significantly restrains the back reaction of Br-/Br,



Pt vs. Cr,0; coated Pt in 0.5M Na,SO,, pH = 3.6
Cr,0, layer has eliminated O, reduction
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Similar behavior was observed as a result of

0.016; SiO, deposition on the surface of Pt

04 03 02 01 0 0.1
Ewe/V vs. SCE



Summary
 New PEC Materials (Tasks 1-2)

— Oxides:

« Iron Oxide: We have substituted over 32 different “dopants” at several concentrations into
hematite. Significant improvements were often observed, however, none of the magnitude
required to give reason to pursue iron oxides further.

» Theory inspired synthesis and characterization of CuMO, Delafossite type oxides was completed
for M=Cr,Fe,Ga,La. All had poor PEC performance.

* No oxide semi-conductor has yet been shown to be a practical candidate for hydrogen production
by PEC.

— Non-oxides:

» Initial work with phosphides shows InP to have extremely high IQE and IPCE for hydrogen
production using oxidants other than water.

+ Initial syntheses of new phosphides from oxides in format for high-throughput testing promising.

« Surface Passivation and Electrokinetics (Tasks 3-6)
— Surface integrity (cracks and pinholes) less of a concern than other factors.
— Pt electrocatalysts may be photoreduced on p-type phosphides after synthesis.

— Passivation of phosphide surface with stable oxides permeable to hydrogen may be used
to block back reaction.

* New Systems and Technoeconomics (Tasks 7-9)

— Intial exploration of hydrogen production from HX haloacids coproduced with
biogasoline in a biomethane process using X, halogens as a methane activating agent is
promising and allows use of more efficient PEC materials.



Future Work

« Synthesis and Screening of New Materials and Structures:
— 2010 Focus Phosphides

— High-throughput screening and selected physical, electronic, and
photoelectrochemical characterization of phosphides made from oxides.

— Solution phase synthesis of p-n junctions, Cu(M)O, /TiO,
« New Redox Systems:

— Develop slurry based system stable in HBr for production of H, and Br,

— Integrate into biomethane based fuel producing system.



Collaborations

« DOE H, Program
— Directed Technologies (Participated in PEC System Analysis)
— Standard PEC testing group discussion
— Yanfa Yan, NREL (Theoretical Calculations)
— Eric Miller, University of Hawaii (Electrocatalysts for WO,)
— Clemens Heske, UNLV (Characterization of Fe,O,)
— Tom Jaramillo, Stanford (round-robin testing)

« M. Gréztel, Ecole polytechnique fédérale de Lausanne ( Fe,0; )

{COLE POLYTECHNIQUES
‘EDERALE DE LAUSANNE] 29

ucss Tavaors HEEPAEE & sme=e

University of Nevada, Las Vegas
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