

Semiconductor Materials for Photoelectrolysis

DOE Hydrogen Program Annual Merit Review June 10, 2010 Project ID#: PD035 John Turner, Ph.D. Research Fellow John.Turner@nrel.gov

This presentation does not contain any proprietary, confidential, or otherwise restricted information NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Overview

Timeline

- Project start date: 1991
- Project end date: 2012
- Percent complete: N/A

Budget

- Total project funding
 - DOE share: \$9.8M
- Funding received in FY09: \$1350k
- Funding for FY10: \$1100k

Barriers

- Barriers addressed
 - Y. Materials Efficiency.
 - Z. Materials Durability.
 - AB. Bulk Materials Synthesis.
 - AC. Device Configuration Designs.

Partners

- Interactions/ collaborations
 - Los Alamos National Laboratory
 - University of Nevada Las Vegas
 - Colorado School of Mines
 - University of Colorado
 - University of Hawaii
 - Stanford University
 - Program production solicitation
 - MVSystems, Inc.
 - Small Business Innovation Research
 - Synkera Technologies, Inc.
 - Physical Optics Corporation

Objectives/Relevance

- The objective of this work is to discover and characterize a semiconductor material set or device configuration that (i) splits water into hydrogen and oxygen spontaneously upon illumination, (ii) has a solar-to-hydrogen efficiency of at least 5% with a clear pathway to a 10% water splitting system, (iii) exhibits the possibility of 1000 hrs stability under solar conditions and (iv) can be adapted to volumemanufacturing techniques.
- The main focus of our work this past year has been to develop and optimize state-of-the-art materials that we have identified as promising for meeting DOE's near-term efficiency and durability targets.

Table 5.1.10. Technical Targets: Photoelectrochemical Hydrogen Production						
Characteristics	Units	2003 Status	2006 Status	2013 Target	2018 Target ^b	
Usable semiconductor bandgap ^c	e∨	2.8	2.8	2.3	2.0	
Chemical conversion process efficiency (EC) ^d	%	4	4	10	12	
Plant solar-to-hydrogen efficiency (STH) ^e	%	not available	not available	8	10	
Plant durability ^f	hr	not available	not available	1000	5000	
National Renewable Energy Laboratory				Innovation for C	Dur Energy Future	

Milestones/Relevance

FY09

	Milestones	Completion Date
3.4.1	Complete experiments on the water-splitting efficiency of a system based on GaInN nitride material.	11/09
3.4.2	Complete characterization of SiN for direct water splitting and as coating for a-Si, and go no-go decision for additional studies.	09/09

FY10		Milestones	Completion Date
	3.4.1	Complete experiments on the durability of InGaN material and estimate material lifetimes	01/10
	3.4.2	Complete characterization of a-SiC coated a-Si, and report efficiency and lifetime status	01/10
	3.4.3	Complete study of corrosion testing of a-SiC in collaboration with UNLV analysis and report on potential for long-term stability	04/10
	3.4.4	Complete preliminary study of nitrided GaInP ₂ and make go no-go decision on further study.	04/10
	3.4.5	Complete initial testing of ALD coated GaInP ₂ and make go no-go decision on further study	04/10
	3.4.6	Complete characterization (efficiency and stability) of nanostructured MoS ₂ and WS ₂ .	09/10
	3.4.7	Complete characterization of delafossite materials and make go, no-go decision	09/10

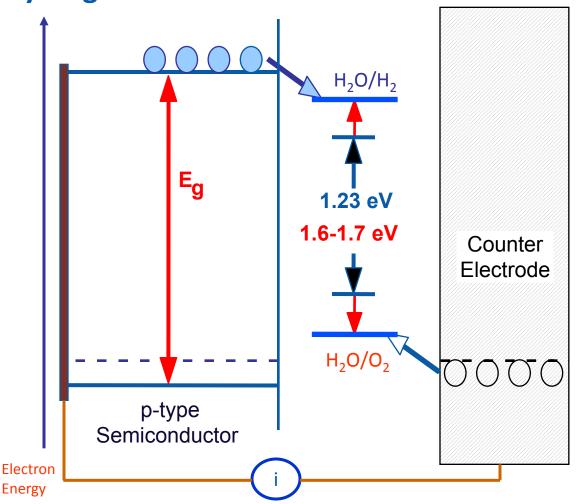
Approach

Break down the large set of possible materials into two general categories

Non-Oxides

- III-V materials have the highest solar conversion efficiency of any semiconductor material (GaInP₂/GaAs tandem >12% solar-to-hydrogen)
 - Direct transition band gap, couple μm's of material, not 100's of μm
 - Large range of available band gaps (0.7eV 3.4 eV)
 - Stability an issue nitrides show promise for increased lifetime (Barriers Y & Z)
 - Band-edge mismatch with known materials tandems an answer (Barrier AC)
- I-III-VI materials offer high photon conversion efficiency and possible low-cost manufacturing–Cu(In,Ga)(S,Se)
 - Synthesis procedures for desired band gap unknown (Barrier AB)
 - Tandem on Si p/n, requires low-temp synthesis
- Other thin-film materials with good characteristics
 - a-Si/a-SiC· low-cost synthesis, stability (Barrier AB)
 - a-SiN: emerging material (Barrier AB) no-go

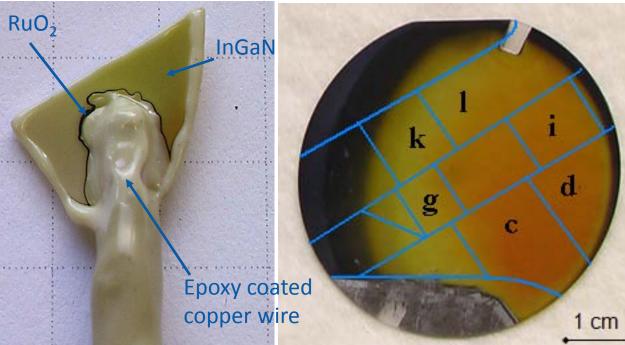
Mixed Metal Oxides


- Theory-DFT calculations to identity promising candidates
- Synthesis and characterization
- Cu, Bi, Sb based ternary or multinary oxides

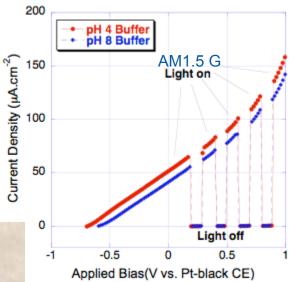
Innovation for Our Energy Future

Characteristics for Ideal Photoelectrochemical Hydrogen Production Material

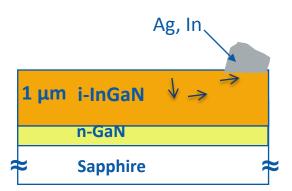
Efficiency – band gap (Eg) must be at least 1.6-1.7 eV, but not over 2.2 eV; must have high photon to electron conversion efficiency


Material Durability – semiconductor must be stable in aqueous solution

Energetics – band edges must straddle H₂O redox potentials (Grand Challenge)


All must be satisfied <u>simultaneously</u>.

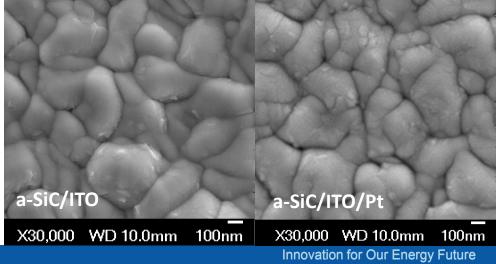
In_xGa_{1-x}N: III-V Nitride Materials (Los Alamos)


- Electroplating of Ru from RuCl₃ solution for O₂ evolution catalysis demonstrate deficiency in contact geometry for LANL InGaN
- Contact issues prohibit realistic catalyst, durability, efficiency studies
- Photocurrents (efficiency) could be improved by several orders of magnitude

Unbiased water splitting

Low efficiency (poor carrier collection)

Innovation for Our Energy Future


a-Si & a-SiC thin films

- p-type photocathode materials
- a-SiC is forming insulating SiOx layer at electrolyte interface severely hindering short-circuit current
 - PEC a-Si/a-SiC hybrid <1mA/cm²
 - Solid-state analogue ~5mA/cm²
- HF etch improved short-circuit current, but maximum value (1.3 mA/cm²) still well below solid-state value
- Continued durability testing of a-SiC
 - Results are highly variable

- Thick layer of capping Pt sputtered on top (more like PV/electrolysis than PEC)
- Electrodes degraded faster than bare a-SiC

National Renewable Energy Laboratory

CuGaSe₂ (CGS) Durability (Univ. of Hawaii)

- CGS is a thin film semiconductor considered as the top junction in a tandem cell–must be durable
- Researched platinum catalysts treatments - Inconsistent results due to CGS variability

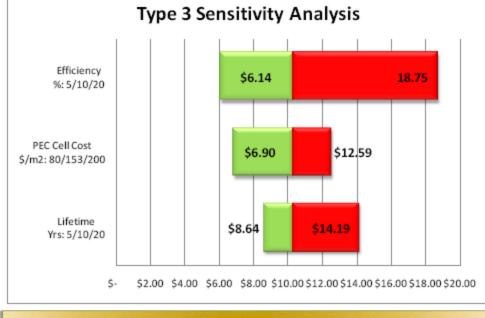
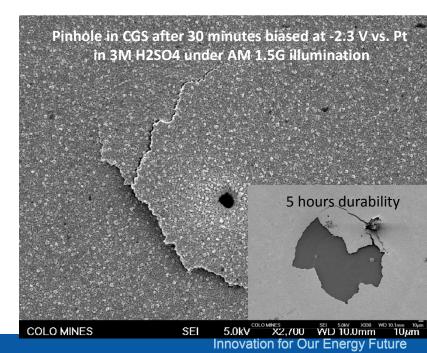
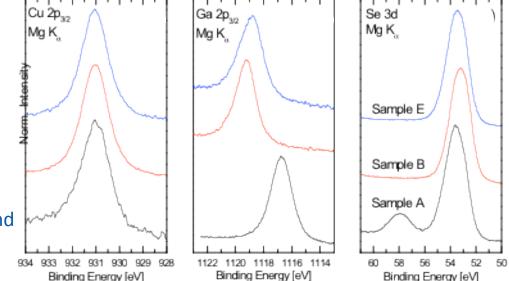
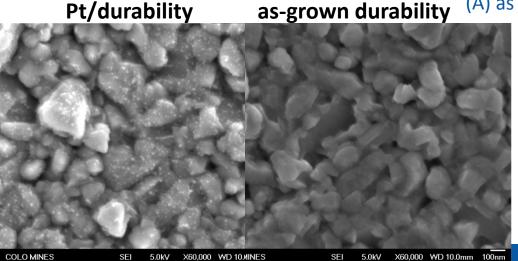



Figure 10-19: Type 3 Cost Sensitivities (\$/kgH₂)

Hydrogen Cost ~\$10/kg but PEC system benefits directly from PV cell cost reductions. Cost Reduction to ~\$5.50/kg H₂ is quite possible.

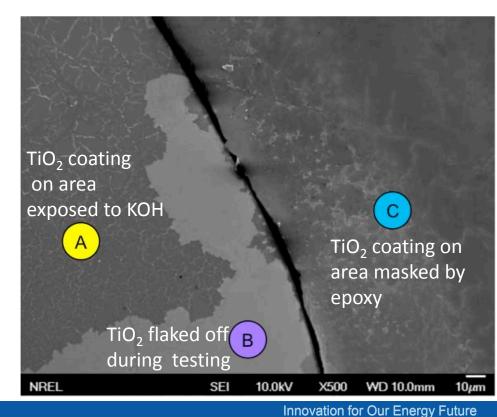

- Potentiostatic analysis for short duration (6-hours)
 - Mechanical instability
 - Pinholes/delamination
 - Could be due to fluorine doped tin oxide substrate
- Further analysis necessary to determine if it is chemically stable
 - XPS surface analysis
 - ICP-MS analysis of durability solutions


National Renewable Energy Laboratory

Chalcopyrite materials based on [Cu(In,Ga,Al)(S,Se,Te)₂]

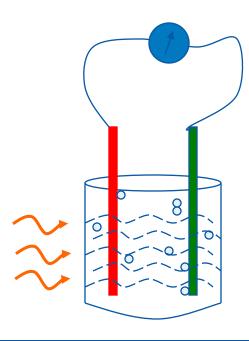
- HNEI CuGaSe₂ baseline testing/UNLV XPS analysis
 - Biasing alters Ga environment
 - Electrolyte alters Se environment by removing SeO₂ (could be etching by acid)
- Durability testing with and without Pt catalyst
 - Evaluate corrosion by PEC performance and SEM imaging
 - So far insignificant differences

XPS showing Cu 2p, Ga 2p, Se 3d for $CuGaSe_2$ for (A) as grown, (B) tested w/o light, (E) tested w/ light



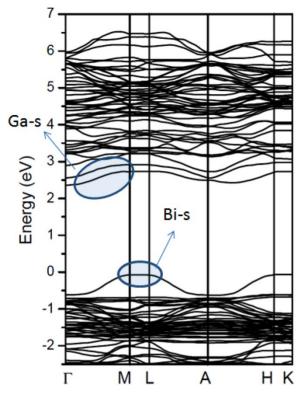
Protection Strategies for High-Efficiency III-V Photoelectrodes

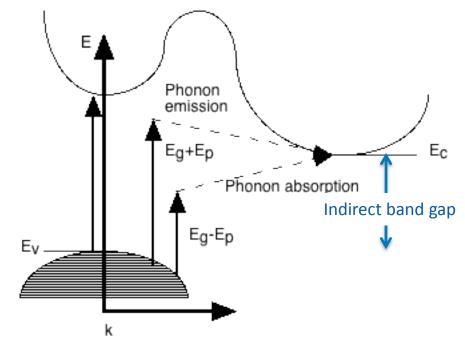
- Coatings
 - ALD TiO₂, 20nm on p-GalnP₂
 - Portions of coating flaked off
 - Conditions not harsh enough to observe statistically significant protection
 - 22hrs, 5mA/cm², 1M KOH
- Electrochemical nitridation
 - Preliminary results indicated surface was protected when run in NH₄NO₃
 - XPS found NH₃
 - Cation, Anion, Acid strength?


- GaInP₂/GaAs Tandem Cells
 - 12.4% Solar to hydrogen efficiency
 - Individual electrode performance is wafer-position dependent

National Renewable Energy Laboratory

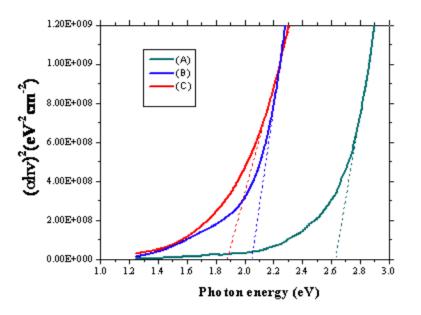
Approach for Oxide PEC Materials Search


- **Theoretical Screening of Oxides for Photoelectrochemical Hydrogen Production**
- Use theory to predict electronic (band) structures of unexplored materials
 - Calculate band gap and spectra
 - Calculate carrier mobility and band edge position (wrt vacuum)
- Synthesize promising materials
- Characterize
- Iterate with theory group



Theory of metal oxide, nitrides and other materials

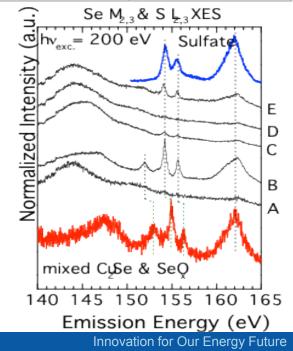
- DFT calculations of Bi & Ga alloying of delafossites (CuYO₂)
 - Leads to reduced band gap
 - Reduced hole effective mass
 - Still an indirect transition



- Direct (vertical in band diagram) transition is preferred because it is more efficient, requires less material
- Degree of band curvature directly relates to carrier effective mass (mobility) and a flat band structure indicates poor mobility and likely a poor material

NREL synthesis of metal oxide alloy thin films

- Synthesis of Cu-W-O amorphous oxide materials by RF sputtering
 - Successfully reduced optical band gap
 - XRD indicates amorphous
 - Materials were unstable as PEC electrodes at high and low pH and nonresponsive at moderate pHs
 - Explaination
 - WO₃ unstable in basic
 - CuO₂ unstable in acidic
 - May be possible to stabilize at neutral pHs using Co catalyst.
 - Currents were only a few microamps
 - No-go on further studies unless higher current system reported (watch list)


UV-Vis for (A) WO₃, (B) and (C) CuWO_x with increasing Cu content

Advanced Characterizations

- Clemens Heske's group (UNLV)
 - UNLV Spectroscopic Analysis
 - Berkeley's Advanced Light Source Spectroscopies
- Determine semiconductor/catalyst interaction, corrosion mechanisms
 - Extend our understanding of these phenomena to an atomic level
- CGS, a-SiC, WO₃ analysis thus far
- III-V-N materials soon
- Details presented at Monday's poster session: PD051_Heske

X-ray Emission Spectra from CGS samples sent to UNLV

Name in report	Sample Identification	Test parameters
A	CGS 090202-13 4	control
В	CGS 5	In 0.5M H ₂ SO ₄ for 24 hr in dark
с	CGS 090202-22 1	Illuminated OCP, 0.5M H ₂ SO ₄ , 2 fiber optic illuminators, 60 s: 20 dark, 20 light, 20 dark
D	CGS 090202-22 2	3E Chopped light IV, 0.5M H ₂ SO ₄ , AM1.5,-1.0 V vs. Ref to 0.05 vs. open circuit, chop every 100 mV
E	CGS 090202-13 3	Illuminated OCP, 2E: - 2.5 V to 0.05, 3E IV: -1 V to 0.05 V, performed in this order

PEC Standards group

- Literature on PEC material characterizations does not adhere to "accepted" methods and standards
- Multiple year project on developing and publishing methods and standards for reporting (efficiency defined)
 - Contributors from NREL, DOE, Stanford University, University of Hawaii, UC Santa Barbara, University of Louisville, University of Tokyo and Australian Nuclear Science and Technology Organization International
 - Huyen Dinh (NREL) facilitated
- Published abbreviated Review paper in Journal of Materials Research
 - January 2010

- Currently seeking feedback from broader community on sharepoint site
 - National and International reviewers
 - Goal is to incorporate reviewers' suggestions, modify documents, and publish
- Considering venue for publication of lengthy report in a technical report or book.

http://www2.eere.energy.gov/hydrogenandfuelcells/pec_standards_review.html

Collaborations

Partners (extensive collaboration with all)

- University of Nevada Las Vegas
 - Samples sent to Heske group for X-ray spectroscopic characterization (ALS)
- Colorado School of Mines
 - Graduate and undergraduate research associates, electron microscopy
- University of Colorado
 - Undergraduate research associates
- University of Hawaii
 - CGS and RuO₂ from Hawaii for Pt catalyst studies; cooperative PEC characterization
- Stanford University
 - Jaramillo group- collaboration on nanostructured transition metal dichalcogenides
- University of Louisville
 - Sunkara group- ALD of TiO₂ on GaInP₂
- Los Alamos National Lab
 - Todd Williamson synthesizes InGaN samples
- Small Business Innovation Research
 - Synkera Technologies, Inc. (Industry)
 - Characterization of novel electrode structures and materials
 - Physical Optics Corp. (Industry)
 - Logistical support and consulting
- Program production solicitation
 - MVSystems, Inc. (Industry)
 - Characterization and durability analysis of a-SiC:H & a-SiN:H on materials provided by MVSystems

Proposed Future Work

- Investigate MBE grown p-InGaN and conductive substrates
 - p-type for cathodic protection
 - Conductive substrates for improved efficiency
- Further UNLV analysis & discussions to understand how spectroscopy results correlate with PEC test parameters
- Investigate protective coatings and treatments for proven high-efficiency materials that suffer from instability
 - Thin coatings by ALD
 - Electrochemical nitridation
 - Plasma nitridation
 - Ion bombardment nitridation

- Explore other substrates for CGS durability
 - Ultimate application is tandem cell
 - Si more realistic substrate
- Synthesis and characterization of oxide materials
 - Cu-Ti-O system
 - CuGaO₂ delafossites
- Investigate alternative oxygen evolution catalysts as counter electrodes to improve photocathode efficiency
 - RuO₂, IrO₂, Co (phosphate)

Summary

- Identified possible contact strategy capable of improving InGaN water splitting efficiency that could satisfy technical target (10%)
- We down-selected a-SiN and Cu-W-O materials that demonstrated poor performance and stability
- We determined the efficiency and stability of a-SiC/a-Si hybrid photoelectrodes
 - Low efficiency-compared with solid-state
 - Durability must be improved to meet 1000-hour technical target
- Led the effort to establish standardized measurement and reporting practices for PEC materials

Summary

- A viable PEC water splitting system requires a unique material that satisfies several specific requirements
 - No known material is suitable
 - Incremental progress has been made enhancing stability and efficiency
- New materials must be synthesized and characterized
 - Guided by rational theory, synthesis, characterization feedback
 - Not going to meet DOE technical targets with slight modifications of the usual (oxide) suspects
- Primary focus is finding a suitable material; secondary concern is developing a high-throughput/low-cost synthesis route

Acknowledgements

- Kim See Colorado School of Mines
 - CGS, SEM
- Jane Henderson- University of Colorado, Boulder
 - SiN, SEM
- Josh Morton University of Colorado, Boulder

– SiC

- Alexandra Chakeres- Washington University, St. Louis
 - InGaN
- Leah Kuritzky Stanford University
 - InGaN
- Ryan Jones- Emory University
 - SiN
- Heli Wang NREL
 - GaInP₂ nitridation
- Ashley Gaulding, University of Minnesota
 - TiO₂ coated GaInP₂, SEM