

Biological Systems for Hydrogen Photoproduction Maria L. Ghirardi

Key personnel:

M. Seibert, P. King, K. Ratcliff, S. Smolinski

National Renewable Energy Laboratory

June 2010

Project ID # PD037

This presentation does not contain any proprietary, confidential, or otherwise restricted information

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC

Overview

Timeline

Project start date: FY00 Project end date: FY12 Percent complete: N/A

Barriers

Production barriers addressed

- Continuity of H₂ production (AI)
- Feedstock cost in an integrated system (AT)
- Rate of H₂ production (AH)

Budget

Funding received in FY09: \$800K

Funding allocated for FY10: \$600K

Partners

Drs. Anatoly Tsygankov and Sergey Kosourov, Institute of Basic Biological Problems, RAS, Pushchino, Russia Dr. Michael Flickinger, North Carolina State University Dr. Eric Johnson, Johns Hopkins University Drs. Iftach Yacoby and Shuguang Zhang, MIT

Objectives/Relevance

- **General**: Develop photobiological and integrated photobiological/fermentative systems for large-scale H₂ production.
- Task 1: Address the O₂-sensitivity of hydrogenases, which prevents continuity of H₂ photoproduction under aerobic, high solar-to-hydrogen (STH) conditions.
- **Task 2**: Utilize a limited STH H₂-producing method (sulfur deprivation) as a platform to address other factors limiting commercial algal H₂ photoproduction.
- **Task 3**: Integrate photobiological and fermentative systems in different configurations for less costly H₂ production in the short term.

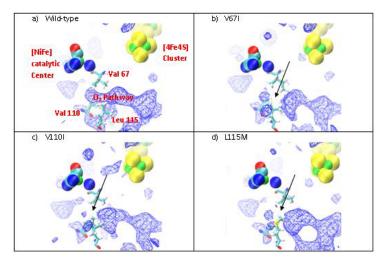
Parameters	Current Status	2013 Targets	Maximum Potential
Duration of continuous			
photoproduction			
 Aerobic, high STH (O₂-tolerant) 	0	30 min	12 hours
• Aerobic, limited STH (S-deprivation)	10 days		indefinite
• Anaerobic, limited STH (S-deprivation)	90 days		indefinite
O ₂ tolerance (half-life in air)			
Oxidized conditions	4 min		
Reduced conditions	40 min		
Cost (\$/kg H ₂)			
 Aerobic, high STH (O₂-tolerant) 			\$2.99
• Anaerobic, limited STH (S-deprivation)			\$6.02
 Integrated (photo + fermentative) 			\$3.21

Task 1 – O₂ Sensitivity/Rate of Hydrogenases Objectives, Approaches, and Collaborations

Objectives: (1) Develop and optimize *aerobic, high-STH* photobiological systems for the production of H_2 from water by engineering a H_2 -producing catalyst ([FeFe]-hydrogenase) that has an extended half-life following exposure to O_2 .

(2) Explore fusions between hydrogenase and ferredoxin to increase photosynthetic electron flow to the hydrogenase (this is unrelated to O_2 sensitivity, but it addresses the rate of H₂-production barrier).

Approaches:


- Use computational simulations to identify pathways by which O₂ accesses the catalytic site and use site-directed mutagenesis to molecularly engineer the enzyme to prevent O₂ access.
- Use random methods to generate mutants with higher O_2 tolerance.
- Introduce a more O_2 -tolerant bacterial hydrogenase into algae.
- Evaluate the feasibility of creating fusions between hydrogenases and ferredoxin to increase electron flux to the hydrogenase.

Sec. or

Collaborator: MIT (currently unfunded)

Task 1 – O₂ Sensitivity of Hydrogenases Accomplishments and Milestones

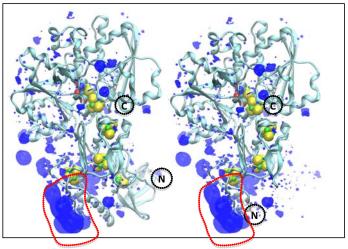
 Computational modeling: We 2. extended analysis of pathways to [NiFe]-hydrogenases; identified 3 key residues as potential targets for mutagenesis to decrease O₂ diffusion to catalytic site:Val67, Val110 and Leu115 in *D. gigas*.

Task	Due date	Status
Use implicit ligand sampling method to map the	January 2010	completed
pathways in [NiFe]-hydrogenases		

Site-directed mutagenesis:

(a) We attributed the multiphasic kinetics of O_2 inactivation to the existence of three states of [FeFe]-hydrogenases, each with different tolerance toward O_2 (the reduced state is more O_2 -tolerant than the oxidized one; the third state is O_2 -insensitive); (b) we are re-assessing our strategy for controlling O_2 diffusion to the catalytic site of [FeFe]-hydrogenases; a manuscript is in preparation (see future work).

Previous results showed that the clostridial H_2 ase is 100X more tolerant to O_2 than the algal enzyme; *re-directed resources toward expressing the clostridial hydrogenase in Chlamydomonas to assess the effect of a more O*₂-tolerant hydrogenase on H_2 production in vivo (see next slide).

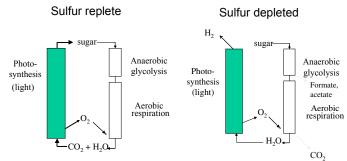

Task 1 – O₂ Sensitivity of Hydrogenases Accomplishments and Milestones

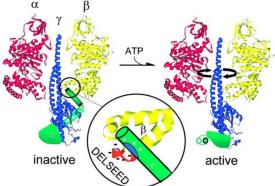
- 3. Random mutagenesis: No new results to report.
- 4. Expression of the clostridial hydrogenase in Chlamydomonas: Inconclusive activity results with one transformant; evaluation of additional transformants show expression in Chlamydomonas; activity is being evaluated.

Task	Due date	Status
Demonstrate that Cal is active in C.	February 2010	Inconclusive;
reinhardtii		postponed
Measure the O ₂ sensitivity of H ₂ ase activity in <i>C. reinhardtii</i> transformants	April 2010	In progress

5. Create fusions between hydrogenases and ferredoxin to improve reductant flux to the hydrogenase: We simulated the docking between the Ca1 H₂ases with the algal ferredoxin to guide MIT's engineering efforts. Results suggest that the interaction could be facilitated if the clostridial hydrogenase were truncated, to reposition the N-terminus for fusion with Fd.

Task	Due date	Status
Use computational modeling to design fusions	December	completed
between [FeFe]-hydrogenases and ferredoxin	2009	
Create genetic constructs of Cal and PetF (by MIT)	March 2010	completed


Models of docking between complete (left) or truncated (right) Ca1 H_2 ase with algal ferredoxin.


Task 1 – O₂ Sensitivity of Hydrogenases Future Work

- **1. Computational simulation**: We will compare the geometry and energetics of the catalytic center and adjacent structures of [FeFe]-hydrogenases with different sensitivity to O₂. We are re-assessing how O₂ accesses the enzyme's catalytic center and to what extent this depends on channel structure/configuration.
- 2. Site-directed mutagenesis: A manuscript will be submitted summarizing current observations regarding the redox states effects on H_2 ase O_2 inactivation; the approach involving gas channels is on hold until expression studies clarify whether higher hydrogenase O_2 tolerance as measured *in vitro* translates into higher O_2 tolerance *in vivo*.
- **3.** Random mutagenesis: New personnel are being hired to restart the research. We will determine a new strategy based on new results from Subtask 1.
- **4.** Expression of clostridial hydrogenase in Chlamydomonas: We will characterize additional constructs and, if required, design new Ca1 constructs or alternative approaches to increase H₂ production *in vivo*.
- 5. Hydrogenase/ferredoxin fusions: NREL will continue to provide guidance to MIT's work and will test their transformants in house if additional funding is available.

Task 2 – Sulfur-Deprivation Platform Objectives, Approaches, and Collaborations

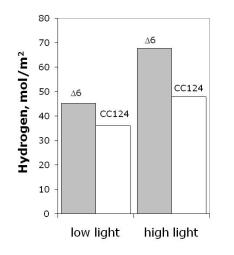
Objectives: Further optimize and utilize an anaerobic, limited-STH working platform to study biochemical and engineering factors that affect H_2 photoproduction by biological organisms; focus on the effect of an inactive, leaky ATP synthase on the rates.

Approaches:

- Continue to improve the H₂-production yields by alginate-immobilized algae RAS).
- Test and optimize the performance of immobilized, photoautotrophic cultures (RAS).
- Generate inducible ATP synthase mutants and test them with the immobilized system.

Collaborators: Johns Hopkins University, the Institute of Basic Biological Problems, Russian Academy of Sciences (RAS)

Task 2 – Sulfur-Deprivation Platform Accomplishments and Milestones


 Improve H₂ rates and yields using immobilized films: Lower thickness improves rates and yields; higher thickness improves protection against O₂ inactivation under aerobic conditions and prevents acetate diffusion.

Film thickness, μm	Total Chl concentration, μg/cm ² film	Maximum specific rate of H ₂ production in argon, μ mole mg Chl ⁻¹ h ⁻¹	Maximum specific rate of H ₂ production in air, μmole mg Chl ⁻¹ h ⁻¹ (% of rate in argon)	Total yield H ₂ gas in argon, mo		Total yield of H ₂ gas in air, mol m ⁻² (% of rate in argon)
180	71.37	13.5	3.4 (25%)	0.55		0.094(17%)
260	101.6	7.8	2.8 (36%)	0.43	•	0.096 (22%)
290	117.74	6.1	2.6 (43%)	0.42		0.113 (27%)
310	110.89	5.9	2.3 (39%)	0.41		0.093 (23%)

2. Test and improve the performance of photoautotrophic, immobilized cultures: No results to report; work just getting started.

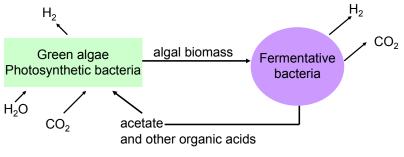
Task 2 – Sulfur-Deprivation Platform Accomplishments and Milestones

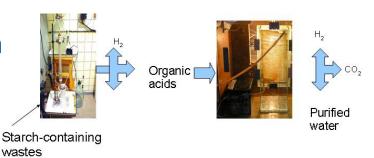
 Design ATP synthase conditional mutants: A C-terminus-mutated εsubunit of the ATP synthase will be expressed in the chloroplast of Chlamydomonas behind a promoter that induces expression upon anaerobiosis. Specific mutations have been identified and transformants are being screened in an immobilized environment.

Site-directed alteration of the Cterminus to remove positive charges should further stimulate H₂. $\Delta 6$ spinach $\leftarrow RRARTRVEAS NTISS$ Chlamy $\leftarrow KRAKARYQVVKVLKKI$ PS3 $\leftarrow KRAMNRLSVAEMK$

Task	Due date	Status
Design ATPase conditional	December 2009	completed
mutants		
Test immobilized ATPase	August 2010	completed
mutants under sulfur-deprived		
conditions		

Task 2 – Sulfur-Deprivation Platform Future Work


- Improve H₂ rates and yields using immobilized films: Test the effect of the volume of the photobioreactor's headspace on the H₂-production properties of algal cultures.
- 2. Test and improve the performance of photoautotrophic, immobilized cultures: Adapt and improve on the methods previously used to induce photoautotrophic cultures to produce H_2 in the absence of added acetate.
- 3. Construct and test the performance of Chlamydomonas inducible transformants carrying a leaky ATP synthase ε-subunit gene: Transformants will be tested for growth, photosynthetic activity ,and H₂ production capability.


Task 3 – Integrated Systems Objectives, Approaches, and Collaborations

Objectives: Integrate photobiological with fermentative organisms to more efficiently utilize the solar spectrum and the substrates/products from each reaction for H_2 production.

Approaches: • Integrate sulfur-deprived, alginateimmobilized algal H₂ production to fermentative H₂ production by an anaerobic consortium isolated from wastewater sludge.

 Integrate fermentative H₂ production from potato waste to photosynthetic H₂ production by anaerobic, purple non-sulfur bacteria (RAS).

Collaborator: Institute of Basic Biological Problems, RAS

Task 3 – Integrated Systems Accomplishments and Milestones

 Complete small-scale experiments on fermentability of algal biomass feedstock by the anaerobic consortium: The consortium ferments algal biomass with a molar yield >4, which suggests that other cell components are being utilized.

Biomass	mol H₂/mol glucose (from starch)	mg glucose (from starch)/100 mg biomass dry wt	µmol H₂/mg biomass dry wt
142h-S (fresh)	1.86	8.7	0.60
142h-S (frozen)	2.11	3.5-8.7	0.64
+S (frozen)	6.30	1.9	0.52

Feedstock	mol H ₂ /mol feedstock	µmol H₂/mg feedstock
Lipid	0.09	0.20
Protein	6.56	0.10

2. Optimize fermentative H₂ production from potato waste.

Factors that increase rates/yields: exclusion of ammonium, addition of Fe ions, peptone and zinc; high phosphate buffering capacity; best yield: 1.6 mol H_2 /mol glucose.

3.	Demonstrate sequential H ₂
	production from integrated dark
	and light-driven processes.

Maximum demonstrated yield from sequential process using potato waste as feedstock is 5.6 mol H_2 /mol glucose.

Task	Due date	Status
Determine the fermentability of alginate films	March 2010	completed
Design and test connections between fermentors and photobioreactors	March 2010	completed
Report on the carbon mass balance and H ₂ yields of a scaled- up fermentative system	September 2010	In progress

Task 3 – Integrated Systems Future Work

- 1. Scale up and further optimize fermentation of suspended and immobilized algal biomass by the fermentative consortium using new fermenters.
- 2. Optimize the integration of the fermentative/photobiological H_2 -production system using potato waste as the feedstock.

Summary

Task 1:

- Extended the computational modeling techniques used to identify gas diffusion to the *Desulfovibrio gigas* [NiFe]-hydrogenase.
- Confirmed that the reduced state of the [FeFe]-hydrogenase is more tolerant to O_2 in vitro than the oxidized state.
- Identified positive Chlamydomonas transformants containing the Ca1 hydrogenase gene.
- Simulated fusions between the petF ferredoxin and algal/clostridial hydrogenases to test optimal interactions.

Task 2:

- Observed that increased thickness of the alginate film improves O₂ tolerance but decreases H₂-production rates.
- Designed ATP synthase inducible mutants.

Task 3:

- Demonstrated that an anaerobic clostridial consortium ferments algal biomass, pure algal lipid,s and pure proteins.
- Optimized fermentative H₂ production from potato waste.
- Demonstrated sequential H₂ production from dark- and light-driven processes.