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LANL Project Overview

Timeline 
• Project Start Date:FY07
• Project End Date: FY08
• Percent Complete: 100%
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Budget 
•Project End Date: FY2008
• Funding:

•2008: $300K
•2009: $0K*
•2010: $0K

Barriers 
• Barriers Addressed

• Feedstock Cost and   
Availability
• Capital Cost and Efficiency of 
Biomass Gasification/Pyrolysis 
Technology

Partners
• None

*EERE Hydrogen Production and Delivery Budget Zeroed Out 
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LANL Project Objectives

Project Objective

Develop novel low temperature chemical routes and catalysts to 
produce hydrogen/syngas from lignocellulosic feedstocks

The most abundant constituent of biomass is lignocellulosic (~80%).  Discovering 
new chemistries and catalysts that can convert lignocellulosic into 

hydrogen/syngas will be critical if biomass is to be used as a feedstock for 
hydrogen or other alternative fuels. 

Lignocellulosic depolymerization/decomposition is the most process intensive 
(and most challenging) constituent of biomass to convert to hydrogen/syngas

Target: By 2012, reduce the cost of hydrogen produced from biomass gasification to 
$1.60/gge at the plant gate (<$3.30/gge delivered). By 2017, reduce the cost of hydrogen 
produced from biomass gasification to $1.10/gge at the plant gate ($2.10/gge delivered). 
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LANL Project Approach
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In general terms, LANL is in search of novel hydrogen/syngas production routes from 
lignocellulosics.  Two approaches will be explored: 

• Catalytic solubilization of lignocellulosics to generate a sugar feedstock stream for downstream 
APR, and 
• Solubilization of lignocellulosics followed by APRxn of oligomeric, soluble cellulose. 

LANL will conduct screening experiments for evidence of direct aqueous-phase low-
temperature reforming of lignocellulosics to hydrogen/syngas through the use of catalysts designed to 
cleave carbon-carbon bonds of the cellulose backbone. Tandem catalysis approaches, where two 
catalysts or processes are linked together in a single reaction vessel, will be explored to demonstrate 
“one-pot” cellulose solubilization followed by aqueous phase catalytic reforming to generate hydrogen. 
This is important in that if catalysts can be found that will generate hydrogen directly from soluble 
cellulose oligomers, this provides a ‘one-pot’ approach and offers increased utilization of residual 
biomass, increased efficiency and the potential for cost reductions both in feedstock and in capital 
equipment.  LANL’s approach to producing hydrogen from lignocellulosics (i.e., middle and bottom routes) 
is represented by the chemical routes shown in Figure 1 (next slide).  
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LANL Project Approach (cont’d, Figure 1)
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(insoluble)
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Figure 1.  A rudimentary diagram showing LANL's approach to producing bio-syngas (i.e, hydrogen and carbon 
monoxide) from lignocellulosics
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LANL Technical Accomplishments and Progress

• Demonstrated heterogeneous catalyzed hydrolysis of cellobiose to 
glucose

• Demonstrated the conversion of cellobiose to syngas [albeit at low   
conversions (~5%)]

Accomplishments for FY2007-2008
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• Demonstrated catalytically enhanced decarboxylation of lignin

• Performed baseline characterization studies on model compounds 
(i.e., lignin and cellobiose)

• Demonstrated low temperature catalyzed gasification of lignin
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LANL Overview of Scoping Experiments Performed 
in FY07-08

• Flow reactor system for liquid conversion (bench-scale)
• Batch reactors for liquid/solid conversion (bench-scale)

• Scoping experimental results
– Liquid phase conversion

• glucose, cellobiose
– Solid phase mass conversion

• lignin, pine
– Residual solids analysis

• TGA (thermal gravimetric analysis)
• NMR
• FTIR (molecular vibrational frequencies)

– Product analysis
• LC (liquid chromatograph)
• gas analysis
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Conversion of Liquid Phase Oligomeric Cellulose

• Heterogeneous catalytic conversion of soluble phase
– Glucose and Cellobiose to vapor phase products

• Homogeneous catalytic conversion of model cellulose
– Cellobiose as model compound to demonstrate solubization

• Operation
– Flow reactor 

• Well defined conditions (control of T, P, flows)
• Gas analysis

– Batch reactors – closed system
• Reactants loaded, put in oven

– T = 100 – 275 oC; 4 – 18 hrs
• Post analysis

– Catalysts
• Base metals, noble metals with Lewis acid supports (Al2O3, zeolites)
• Ln Triflates, perfluorosulphonic acid as homogeneous Lewis acids
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Analytical Tools Employed for Biomass Research
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High Pressure 2-Phase 
Product Stream

High Pressure Vapor
 Phase Product Stream

Liquid Product Stream

Reactor 1 Reactor 2

Thermocouple Bank (Type K)

Multi-phase flow reactor
• T = 20-1000°C
• P = 1-60 atm

Gas Chromatograph (GC)
• Gas analyses

Liquid Chromatograph (LC)
• Liquid analyses

Additional Analytical Tools
• Liquid NMR
• Solid-state NMR
• Solid-state DRIFTS
Additional Reactors
•Multi-well batch reactors for rapid screening
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Evolved Gas Analyzer (EGA) Setup
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Mass Spectrometer (MS) 

Gas Phase Infrared 
Spectrometer (IR)

Thermal Gravimetric 
Analyzer (TGA)

Gas Chromatogram (GC)
EGA Capabilities

 Measure mass changes as function 
of temperature

 Correlate mass changes with      
evolved gas

 Identify evolved gases with IR, MS, 
and GC

EGA system facilitates a deeper 
understanding  of the reaction 
rates and chemistry

Our suite of analytical tools allow us to gain insight into the fundamental processes of biomass 
pretreatment and hydrogen production from biomass, thus allowing for tailor-made, energy efficient, 
cost-effective processes for biomass utilization

Analytical Tools Employed for Biomass Research
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Aqueous Phase Oligomeric-Cellulose Reforming
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Glucose conversion to vapor phase 
products and trace liquid phase products

Oligomeric-cellulose conversion to 
glucose, vapor phase products and trace 
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SpinWorks 2.5:  
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file: C:\Documents and Settings\118404\Desktop\Lanthanide_project\nmr\MS-1-14\6\fid   expt: <dept135>
transmitter freq.: 75.475295 MHz
time domain size: 65536 points
width: 17985.61 Hz = 238.297995 ppm = 0.274439 Hz/pt
number of scans: 256
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processed size: 32768 complex points
LB:    0.000    GB: 0.0000

anomeric carbon signals:
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Catalyzed Hydrolysis of Cellobiose to Glucose

13C NMR
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Solid Phase Conversion of Lignin
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TGA of Lignin Residue After Various Treatments
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TGA and Evolved Gas Analysis: Lignin Treated with Yb 
Triflate 
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DRIFTS: Fresh Lignin 

Change in relative quantities of functionalities
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Observed changes in lignin DRIFTS 
spectrum after various pretreatments

chemistry is occurring
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TGA and Evolved Gas Analysis: Lignin Treated with Yb 
Triflate 
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SS-NMR of Fresh Lignin
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LANL Project Summary

17

• Conversion of cellobiose to glucose is feasible, but rates currently too low
• Lignin hydrophobicity is a critical challenge for APRxn processes
• Recent results of low temperature catalyzed pyrolysis of lignin shows potential

 Mechanism of the low temperature catalyzed pyrolysis of lignin currently unknown
• Heterogeneous catalysis of glucose and cellobiose

 Relatively high conversions during batch reaction (~60 – 90%)
 Major products appear to be gas phase for heterogeneous catalysis

• Homogeneous catalysis of cellobiose hydrolysis to glucose without significant            
decomposition and/or caramelization
 Aqueous cellulose suspension marginally hydrolyzed to free glucose

• Solid conversion of Lignin & Pine increased by Lewis Acid catalysis 
 Gas phase products tend to syngas rather than alkanes
 Minimal structural change of remaining Lignin (TGA, NMR, DRIFTS)

—Some change in vibrational structure with La Triflate
 Lignin/Gd Triflate demonstrates different decomposition mechanism
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Obstacles to Lignocellulosic Conversion

• Conversion of solubilized hydrocarbons to vapor phase
• Conversion of model compounds simulating solubilization
• Unknown reactivity as a function of lignin pretreatment
• Lignin Solubilization

– Interactions with catalysts limited
– Hydrophobicity
– Steric hindrance

• Conversion chemistry
– Reaction mechanisms not understood

• Innovation in chemistry and catalysis
• Innovation in reactor design and reaction engineering
• Current approaches use highly corrosive bases (>10 molar) requiring costly
materials of construction

18
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LANL Future Work (FY10/11)
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• Continue screening for novel low-temperature biomass gasification catalysts
• Explore conversion chemistry of oligomeric cellulose in phase transfer media
• Explore lignin solubilization and catalytic conversion chemistry of lignin in phase   
transfer media (PRIMARY FOCUS)

 Obstacles addressed:
• Lignin Solubilization

– Interactions with catalysts limited
– Hydrophobicity
– Steric hinderance

• Conversion chemistry
– Reaction mechanisms not understood

• Innovation in chemistry and catalysis
• Innovation in reactor design and reaction engineering
• Eliminate highly corrosive solvents and/or reactants
• Reduce process cost
• Increase process efficiency
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LANL Future Work: Envisioned Process
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 Biomass Digestion Tank:  
Complete dissolution of raw 
biomass

 Non-Aqueous Phase Reactor:  Soluble 
biomass is cracked into lower molecular weight, 
water-soluble species

 Aqueous Phase Reactor:  Water-soluble, lower 
molecular weight species react in aqueous phase 
producing biosyn gas or liquid biofuels

1. A non-corrosive, cheap solvent required to dissolve/digest raw lignin, making lignin tractable                          
[Lignin Solublization, Reduce process cost ]

2. An active, durable, cheap water-insoluble catalyst required for cracking lignin into water-soluble oligomers
[Innovation in chemistry and catalysis, Innovation in reactor design and reaction engineering, & Increase process efficiency]

3. Reaction chemistries and mechanisms must be understood to optimize process viability and reduce cost 
[Innovation in chemistry and catalysis , Innovation in reactor design and reaction engineering, & Increase process efficiency]

Innovation in reactor design and reaction 
engineering

 Requirements for process viability



U N C L A S S I F I E D

LANL Future Work: Biomass Digestion Tank Chemistry
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 Biomass digestion tank

 LANL has demonstrated experimentally 
the dissolution of lignin, keratin, cellulose, 
and pine dust in various non-aqueous 
media

• Lignocellulosics are cross-linked by extensive intra-
and inter-chain hydrogen bonds

• Solvents that can break up the hydrogen bond 
network are known to solubilize lignocellulosics

• Ionic liquids are known to have the ability to 
solubilize lignocellulosics in this way

Non-Aqueous 
Solvent

Hydrophobic Biomass Solid Hydrophobic Biomass Solution

 Literature precedents

Cellulose film containing entrapped laccase (2.78% w/w) formed 
using the IL-dissolution and reconstitution treatment, before (left) 
and after (right)

*M. Turner, et al Biomacromolecules. Vol: 5, 1379-1384 (2004)
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LANL Future Work: Biomass Digestion Tank Chemistry
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 Biomass digestion tank
 LANL has demonstrated experimentally the dissolution of lignin, keratin, cellulose, and pine dust in various non-
aqueous media
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 Liquid phase IR capable of detecting and quantifying extents of dissolution of 
keratin, lignin, and cellulose
We will also employ this technique to track the cracking of lignin and 

cellulose into lower MW oligomers
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LANL Future Work: LT Phase Transfer Chemistry
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 LT Phase Transfer Reactor (LT-PTR)

Non-Aqueous 
Phase Catalyst

Hydrophobic Biomass Solution

Low Molecular-Weight, Water 
soluble Lignocellulosic Oligomers

• PTM catalyst in presence of trace water 
partially hydrolyses cellulose

• Produces water-soluble lower MW oligomers
of cellulose and lignin

 Biphasic IL-metal cation/water systems
• Known and demonstrated at LANL

 Water-immiscible ILs
• Known and demonstrated at LANL

Quaternary PTM immiscible mixture

PTM Phase 1

PTM Phase 2

PTM Phase 3

PTM Phase 4

Water phase

PTM phase Phases have remained 
immiscible for greater 
than seven months



U N C L A S S I F I E D

LANL Future Work: LT Phase Transfer Chemistry
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 LT Phase Transfer Reactor (LT-PTR)
• Cellulose and lignin oligomers converted 

to biosyn gas or other engineered 
products

 Catalytic hydrolysis of cellulose
• Demonstrated in FY2007-2008 research 

funded by Hydrogen Production
Aqueous 

Phase Catalyst

Low Molecular-Weight, Water 
soluble Lignocellulosic Oligomers

HO
O

HO
OH

OH

OH

CO2 + CO + H2

Liquid Fuels

Engineered Product 
Selectivity

Glucose

Cellobiose

Catalyst: Pt/Rh

Conversion: ~ 42%

*S.K. Hanson, et al J. Am. Chem. Soc. 131, 428, (2009)

β O-4 linkage

A primary building unit of lignin

LANL LDRD-funded research* has demonstrated catalytic selective 
oxidation at the β O-4 linkages of a series of model compounds that 
generate low molecular weight phenols, benzoic acids, aldehydes, 
among others
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LANL Future Work: Cost Estimates
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 Cost Estimates using Phase Transfer Media (PTM)
Catalyst assumptions:
• Mass is equal to SMR plant
• Equivalent lifetimes as SMR catalyst 
• Pt loading = 0.5%

Sizing assumptions:
• PTM mass/volume based on a solubility of
0.5 g biomass/gPTM
• Equivalent lifetimes as SMR catalyst 
• Reactor residence time= 10 min

Basis:SMR Plant
• H2 Production capacity = 2.8 x 105 kg H2/day 
• Catalyst volume = 20.5 m3

• Catalyst mass = 1.9 x 104 kg 
• Catalyst lifetime = 5 yrs

Catalyst and PTM Costs
• Raw Pt catalyst cost = $5.5Ma

• Assumed catalyst cost = $19M
• Phase transfer media (@ $45b/kg) = $0.32M 

a Pt catalyst loading 0.5%, Stock Price = $55/g
b PTM quoted priceCatalyst cost includes:

• Precious metal recycling cost
• 10% Pt loss
• Interest

Note: assumed catalyst cost is extremely high compared to current industrial prices; Proposed 
catalysts do not contain precious metals

MAXIMUM COST CONTRIBUTION OF PTM AND CATALYST

$ 2 2(Solvent and Catalyst) /  kg H Produced  0.02 -0.04 $ / kg H=
Costs reflect worst case scenario
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LANL Future Work: LT Phase Transfer Chemistry
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 Issues to be resolved
 Individual steps known independently, but not in one system – need to demonstrate
 If APR of short-chain cellulose oligomers is slow, then we will focus on cracking   

lignocellulosics all the way to glucose

 Advantages/Uniqueness of LANL Project
 One pot reactor capable of solubilizing and catalyzing both lignin and cellulose

• Phase transfer catalysis
• Water soluble fractions fed into APR process

 Extremely flexible process capable of producing various chemical feedstocks for further 
APR processing

 Maximum cost contributions of PTM and catalyst are on the order of $0.02-0.04 per kg of 
H2 produced 

 Reactor and plumbing materials can be carbon steel
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