

DEVELOPING IMPROVED MATERIALS TO SUPPORT THE HYDROGEN ECONOMY

Michael Martin
Edison Materials Technology Center
June 7, 2010

Project ID# PD043

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

• Start Date: Sep 2004

• End Date: Jun 2009

Complete

Budget

• FY04: \$2.945 M

• FY05: \$2.961 M

• FY06: \$2.475 M

• FY08: \$.984 M

DOE Total: \$9.37 M

• Recipient Share: >\$10.4 M

Barriers

- Hydrogen Delivery / Safety
 - Hydrogen Leakage & Sensors
 - Leak Detection Technology
- Hydrogen Production
 - Reformer Capital Cost O&M Cost
- Manufacturing R&D
 - Lack of High-Volume MEA Proc.
 - Manual Stack Assembly
- Fuel Cells
 - Cost/Performance Catalysts / MEA

Partners

- Makel Engineering H₂ Sensor
- Precision Energy Membrane Processing
- Catacel Corp. Reformation
- Faraday Technology Catalyst Application
- NexTech Materials H2 Sensor
- Powdermet, Inc. H₂ Storage
- UltraCell Corp Fuel Cell Power

Program Objectives

Relevance

Edison Materials Technology Center (**EMTEC**) used goals set forth in the USDOE *Hydrogen, Fuel Cells & Infrastructure Technologies Program Plan* to find and fund projects which satisfied these criteria:

- Demonstrate feasibility with job creation potential
- Cross-cutting breakthrough materials technology
- Stimulate near term manufacturing-based commercialization
- Patterned on EMTEC Core/Commercial Technology (CT) model

Target Technology	DOE Barriers Addressed
H ₂ Generation from Renewable Liquid Feedstocks	Fuel Processor Capital Costs, O&M Cost
H ₂ Generation by Water Electrolysis	Renewable Integration
H ₂ Generation by Photo-electrochemical Electrolysis	Materials Efficiency, Bulk Materials Synthesis, Device Configuration Designs
H ₂ Separation Materials – Catalysts, MEA	Cost, Impurities
H ₂ Generation from Biomass and Coal	Capital Cost and Efficiency
H ₂ Storage by New Materials and Concepts	Efficiency, Cost, Weight and Volume
H ₂ Processing: Sensors, Delivery, Purification	Hydrogen Leakage & Sensors Leak Detection Technology Durability, Cost

EMTEC - Accelerating Technology to Market

Approach

- EMTEC solicited projects that:
 - Have industry relevance
 - Are appropriately resourced
 - Are aligned with EERE Hydrogen Goals
 - Address multiple DOE Barriers
 - Have near term commercialization viability
- EMTEC has extensive experience managing collaborative technology projects
- EMTEC has an established business model for selection and management of technology commercialization projects

EMTEC

- EMTEC is one of 7 State of Ohio Edison Centers
 - Established in 1987 by Ohio Gov. Celeste
 - 501c(3) Not-for-Profit
- Membership Based with Over 120 Industry, University, and Government Members
- Virtual We Own no Major Capital Equipment
- Access to Over \$2B in State-Of-The-Art Facilities
- Significant Experience in Ceramics, Metals, Polymers, and many Material Processes - expanded focus includes Instruments, Controls, & Electronics (ICE)

EMTECInteractions/Collaborations

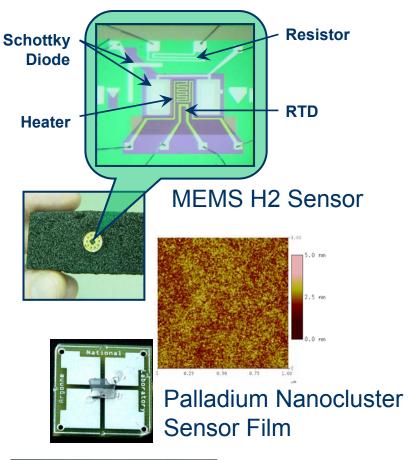
- Air Force Research Laboratory
 - Technology transfer program
 - Commercialization & business development
 - SBIR & Commercialization pilot program support
- State of Ohio
 - Department of Development Technology Division
 - Third Frontier Program
 - Multiple fuel cell projects
 - Photovoltaic Innovation Center (PVIC)
 - Ohio Fuel Cell Coalition
- Business Outreach Services
 - Procurement Technical Assistance Center (PTAC)
 - International Trace Assistance Center (ITAC)
- EMTEC Membership Technical Steering Committee (TSC)

ENTÉC

PARTNERS

Low Cost MEMS Hydrogen Sensor for Transportation Safety Makel Engineering, Inc.

DOE Barriers Addressed:


- Control and safety
- Total Project Value: \$736,656
- Goals and Objectives:
 - Advanced hydrogen sensor system for hydrogen powered transportation applications
 - Provides the means for low cost, compact, low power, and miniaturized systems suitable for mass production

Accomplishments:

- Prototype H₂ sensor developed and automotive testing initiated
- R&D 100 Award (2006)
- Nano 100 Award (2006)

Future Work:

 Nanomaterial enhancements, product testing with automotive partners, improved manufacturability at reduced cost, and market development

Prototype
Detector
Electronics

EMTEC - Accelerating Technology to Market

2006 R&D 100 Award "Ultrafast Nanostructured Hydrogen Sensor"

Reel-to-Reel High Volume, Low Cost MEA Production - Precision Energy & Technology

DOE Barriers Addressed:

- Materials Efficiency, Bulk Materials
 Synthesis, Device Configuration Designs
- Total Project Value: \$935,386
- Goals and Objectives:
 - Low cost manufacture of PEM MEAs for hydrogen and/or electric generation through reel-to-reel manufacture technology

Accomplishments:

- MEA Bonder System produced.
- Demonstrated capability to continuously manufacture 3-layer MEAs
- Membranes can be used to generate hydrogen

Future Work:

Refine catalyst utilization and manufacturing processes

Novel Stackable Structural Reactor (SSR[™]) for Low-cost Hydrogen Production - Catacel Corp.

DOE Barriers Addressed:

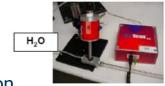
- Fuel Processor Manufacturing,
 Operation and Maintenance,
 Reformer Capital Cost O&M Cost
- Total Project Value: \$692,737
- Goals and Objectives:
 - Drop-in replacement for the loose ceramic catalyst media in the stationary steam reforming process
 - Allows 50% additional capacity from given plant size, or 10% energy savings

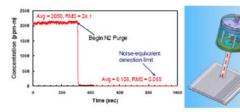
• Accomplishments:

- Lab evaluations complete, pilot manufacturing installed
- Pilot plant install and test

Future Work:

Market entry

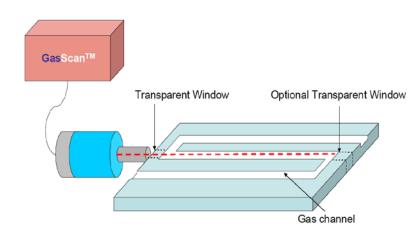

TDLAS Sensor for In-Line Continuous Monitoring of PEM Fuel Cells & Electrolyzers – Faraday Technology, Inc.


DOE Barriers Addressed:

- Efficiency, Cost, Weight and Volume.
- Total Project Value: \$1,034,445

Goals and Objectives:

 Demonstrate technical and economic feasibility of Tunable Diode Laser Absorption Spectrometer (TDLAS) for analysis within PEM fuel cell bipolar plate channels



- Nanoscale catalysts for hydrogen generation
- Bipolar plate fabrication for PEM fuel cells with integrated sensors/shunts
- Briefed DOE

• Future Work:

- Evaluate strategic partnerships for bipolar plate applications
- Product development and market evaluation

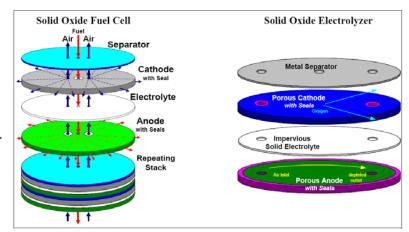
On-Farm Soybean-Powered TMI SOFC System Demonstration – Technology Management, Inc.

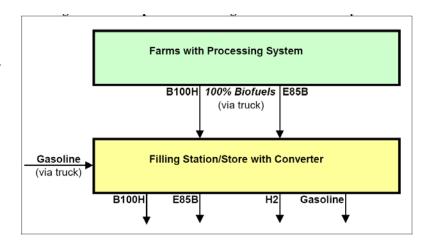
DOE Barriers Addressed:

- Efficiency, Cost, Weight and Volume.

• Total Project Value: \$548,950

Goals and Objectives:


 Advance prototype multi-fuel SOFC system for commercialization


Accomplishments:

 Beta prototype demonstration in plant with soybean/vegetable oil based fuels

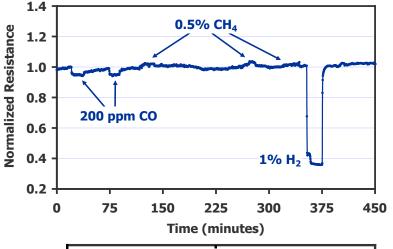
• Future Work:

- Continue test of prototype system with multifuel sources – select candidate test site
- Improve long term cell and stack component performance
- Product development and commercialization

Novel Ceramic Hydrogen Sensors for Fuel Cell Applications – NexTech Materials

DOE Barriers Addressed:

- Hydrogen Leakage & Sensors, Leak Detection Technology, Control and Safety.
- Total Project Value: \$794,602
- Goals and Objectives:
 - Design low-cost H₂ safety sensor that is sensitive and selective to H₂.
 - Take technology from bench-top to prototype level, ready for product launch to market.


Accomplishments:

- Demonstrated high selectivity to hydrogen without interference from CO, CH₄, H₂O, or silicone vapors; a-prototypes have been tested with excellent performance for 2000+ hours.
- Design for manufacturing; Pilot manufacturing; Market entry

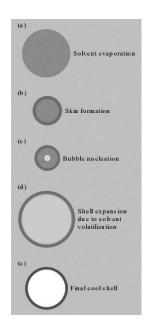
• Future Work:

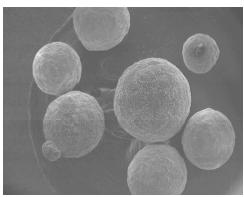
Operational validation

High Strength, Low-Cost Microballoons for Hydrogen Storage - Powdermet Inc.

DOE Barriers Addressed:

- Weight and volume, efficiency, portability
- Total Project Value: \$727,142
- Goals and Objectives:
 - High-strength microballoons by chemical vapor deposition for high volume hydrogen storage
 - Store 6 wt. % H2 in balloons, >4 wt. % in system for 2mm balloons
 - Collaborators include AF Research Labs, Precision Energy and Technology, and Protonex


Accomplishments:


 Verified microballoon extended duration H₂ storage and completed initial system design studies.

Future Work:

Evaluate microballoon technology for other uses.

Manufacturing UltraCell's Reformed Methanol Micro Fuel Cells in the State of Ohio For Military and Commercial Markets

DOE Barriers Addressed:

- Efficiency, Cost, Weight and Volume
- Total Project Value: \$425,000
- Goals and Objectives:
 - Develop and Demonstrate technology with potential customers to accelerate next level of funding support and purchase order generation.

Accomplishments:

- Testing at "alpha" sites such as the Federal Bureau of Investigation (FBI), U.S. Forestry Service, U.S. Marine Corp, and the Air Force Research Laboratory (AFRL).
- Soldier Technology U.S. 2008 Conference: "Best Soldier System Innovation & Technology" Award.
- JRTC Technology Readiness Level (TRL) 7 status
- Follow-on Ohio Third Frontier Award

Future Work:

- Secure tooling for continued long-term material evaluation.
- Field additional prototypes for feedback from Alpha sites.
- Continue performance and form factor work for manufacturing plant outlines.

ENTEC

PARTNERS Other Notable Success Stories

- Catacel Corp Scalable Steam Methane Reformer
 - \$1M Ohio Third Frontier Program follow-on (heat exchanger)
- Midwest OptoElectronics (MWOE) PV Hydrogen Generation
 - Formed into Xunlight Corporation Flexible thin-film PV
 Substantial New Capital Investment
- Praxair Improved Hydrogen Liquefaction Process
 - \$2.1M **DOE follow-on** for improved ortho-para conversion process
- Inorganic Specialists Nanofiber Paper for H₂ Generation
 - \$2M ARPA-E Program Award Nanofiber Paper as Lithium-Ion Anode
- Chemsultants Roll-to-Roll Solution Casting for PEMs
- Proton Energy High Pressure Electrolyzer for Backup Power Systems
- Protonex Methanol Reformed Hydrogen for PEMs

Summary

- EMTEC manages a program with a DOE cooperative agreement in Hydrogen, Fuel Cells & Infrastructure Technologies
- Program featured 38 individual, topically-related projects
 - Phased Projects based on success
 - 7 Active Phase III Projects
- Each project targets at least one DOE technical barrier
- Successful projects continue to generate jobs and marketable products or processes