

Development of Highly Efficient Solid State Electrochemical Hydrogen Compressor (EHC)

Ludwig Lipp FuelCell Energy, Inc. June 7, 2010

Project ID # PD048

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline: Phase II

- Start: August 2008
- End: August 2010
- 85% complete

Budget

- Total project funding
 - DOE share \$750k
 - Contractor share \$218k
- Funding for FY09: \$375k
- Funding for FY10: ~\$330k

Barriers

- Barriers addressed for gaseous hydrogen compression:
 - Improve reliability
 - Eliminate contamination
 - Improve energy efficiency
 - Reduce cost

Partners

- Sustainable Innovations, LLC
- University of Connecticut

Relevance

Objectives:

- Pressure Capability: Develop designs and materials to increase EHC pressure capability from 2,000 to 6,000 psi
- Operating Cost: Improve the cell performance to reduce power consumption (compression efficiency)
- Capital Cost: Reduce the EHC cell cost by increasing operating current density
- Life: Study thermal and water management options to increase system reliability and life

Relevance

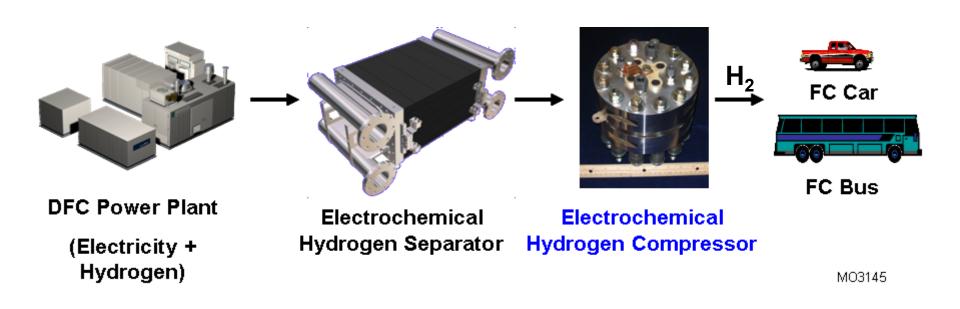
Impact of EHC:

- Increases reliability/availability over current mechanical compressors
- Ensures "no possibility of lubricant contamination" (No moving parts) → Fuel Cell Quality H₂
- Increases Compression Efficiency to 95% (DOE 2015 Target)
- Potentially reduces cost of H₂ delivery to <\$1/gge (DOE Long Term Target)

Approach

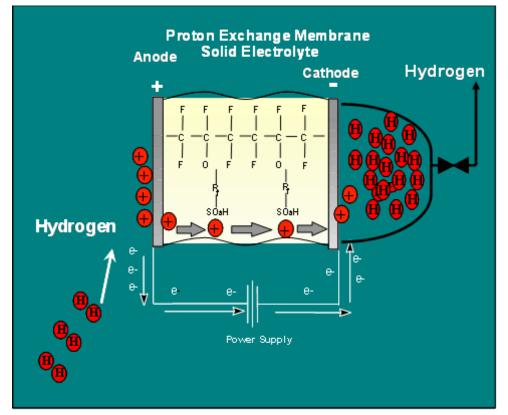
- Use high-pressure electrolyzer experience for mechanically robust cell design
- Higher current density operation to minimize capital and operating costs
- Improved flow field design to increase H₂ recovery efficiency
- Simple system: Reduce capital cost by reducing catalyst loading and humidification requirements

Milestones


Parameter	FY09 Goals	FY10 Goals	Current Status
Hydrogen Product	4,500 psi	6,000 psi	Up to 5,600 psi
Pressure	in 3-cell stack	in single cell	in single cell
Minimize Hydrogen Inlet Pressure	5 psig	5 psig	< 5 psig 🖌
Compression Ratio	Up to 300:1	300:1	300:1 🗸
Hydrogen Recovery	96%	95%	Up to 90%
Efficiency	in single cell	in 10-cell stack	in 10-cell stack
Pressure Cycling	50 cycles to 4,500 psi	≥20 cycles to 3,000 psi	20 cycles to 3,000 psi
	in single cell	in 10-cell stack	in 10-cell stack ✔
Life Testing	500 hrs at 4,500 psi	≥500 hrs at 3,000 psi	~100 hrs at 3,000 psi
	in 3-cell stack	in 10-cell stack	in 10-cell stack
No. of Cells in Stack	3	10	10 🗸

• All FY09 Milestones Met

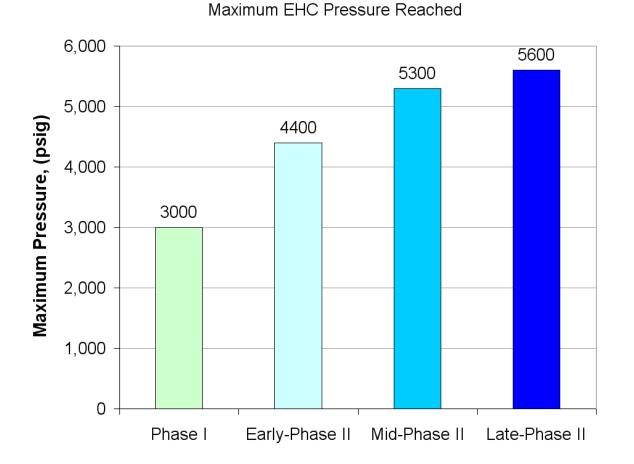
• Making Progress Towards FY10 Milestones


Enabler for Hydrogen Infrastructure

The EHC Technology has Unique Synergy to the Hydrogen Energy Stations

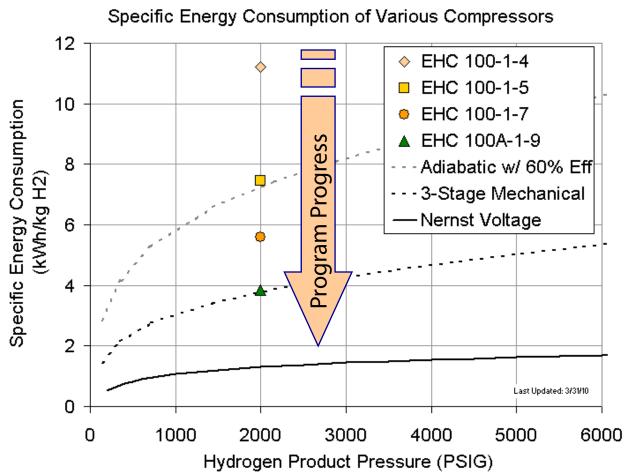
Principle of an Electrochemical Hydrogen Compressor

- Simple Operating Principle with No Moving Parts Solid State !
 - Use of Hydrogen Electrode for High Compression Efficiency

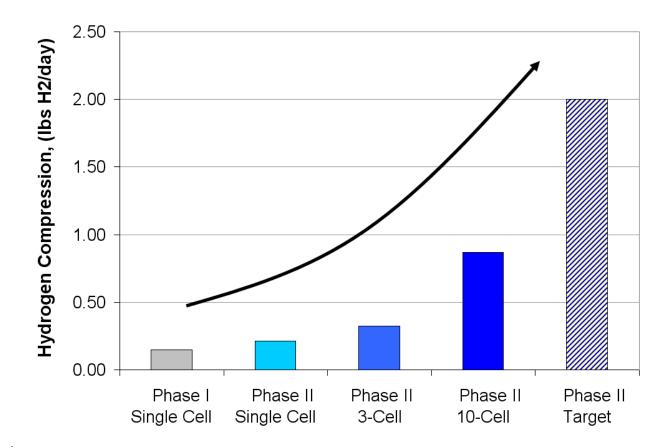

Technical Accomplishments

EHC 10-cell stack operation demonstrated

- Compression Mode Operation: Increased capability from 4,500 psi to 5,600 psi in a single stage EHC cell (360:1 compression ratio)
- Compression Efficiency: Further reduced cell resistance → energy consumption comparable to mechanical compressors
- Pressure Cycling: Completed 20 pressure cycles from 100 to 3,000 psi in 10-cell stack
- Stack: Scaled-up EHC technology from 3-cell to 10-cell stack (up to 3,000 psi)


Hydrogen Product Pressure

Approaching FY10 Pressure Goal of 6,000 psi (Single Cell)


Energy Consumption

Significant Reduction in EHC Specific Energy Consumption Achieved

Hydrogen Compression

Increased EHC Capacity 5x

Making Progress Towards Target Flow Rate of 2 lbs H₂/day

Collaborations

Prime

- FuelCell Energy, Inc.* (Industry):
 - Leading fuel cell developer for over 40 years

Subcontractors

- Sustainable Innovations, LLC^{*} (Industry):
 - Cell and stack design and fabrication
- University of Connecticut^{*} (Academic):
 - Identification and evaluation of low-cost materials
- * Within DOE H₂ Program

Proposed Future Work

- Increase pressure capability of single-stage EHC cell from 5,600 to 6,000 psi
- Further reduce power consumption of current design
- Improve 10-cell stack design to achieve long-term operation
- Demonstrate 2 lb/day H₂ at 3,000 psi
- Increase hydrogen recovery to 95%
- Demonstrate 500 hr life at 3,000 psi in 10-cell stack
- Update estimates of capital and operating costs

Project Summary

- **Relevance:** Provide highly efficient, reliable and costeffective hydrogen compression (up to 6,000 psi)
- Approach: Develop electrochemical compressor solid state device
- Technical Accomplishments: Demonstrated singlestage compression to 5,600 psi, operated 10-cell stack
 Collaborations: Active partnership with industry (Sustainable Innovations) and University (UConn) on materials, design and fabrication
- **Proposed Future Work:** Further increase pressure, efficiency and throughput (2 lb/day H₂ at 3,000 psi)

Acknowledgements

- DOE: Monterey Gardiner, Richard Farmer, Tim Armstrong
- Sustainable Innovations, LLC: Trent Molter, Bill McPhee, Mark Dristy
- FCE: Jonathan Malwitz, Ray Kopp, Pinakin Patel

