Characterization of Materials for Photoelectrochemical Hydrogen Production (PEC)

Clemens Heske Department of Chemistry, University of Nevada, Las Vegas June 7, 2010 Project ID # PD051

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: 5/6/08
- Project end date: 5/5/10 (no-cost extended; further extension to 5/5/11 in negotiations)
- Percent complete: 100% (67% if extended)
 Budget
- Total project funding
 - DOE share: \$200k (FY08/09)
 - Contractor share: \$50k
- Funding received in FY09: none (no-cost extension)
- Funding for FY10: \$100k (in negotiations)

Barriers

- Barriers addressed
 - H. System Efficiency
 - Lifetime
 - Indirectly: G. Capital Cost

Partners

- Interactions/collaborations: DOE EERE PEC WG (NREL, HNEI, MVSystems, UCSB, Stanford, LLNL), Berkeley Lab, HZB Berlin, U Würzburg
- Project lead: C. Heske, UNLV

Activity Overview: Electronic and Chemical Properties of PEC candidate materials (Relevance)

To enhance understanding of PEC materials and interfaces and promote break-through discoveries:

- Utilize cutting-edge soft x-ray and electron spectroscopy characterization
- Develop and utilize novel characterization approaches (e.g., *in-situ*)
- Address materials performance, materials lifetime, and capital costs through intense collaboration within (and outside of) the PEC WG

Research Activity (Approach)

- Overarching goal: compile experimental information about the electronic and chemical properties of the candidate materials produced within the PEC WG
 - Determine status-quo (includes: find unexpected findings)
 - Propose modifications (composition, process, ...) to partners
 - Monitor impact of implemented modifications
- Use a world-wide unique "tool chest" of experimental techniques
- Address all technical barriers related to electronic and chemical properties of the various candidate materials, in particular:
 - Bulk and surface band gaps
 - Energy-level alignment
 - Chemical stability
 - Impact of alloying/doping

Collaborations

(Relevance, Approach, & Collaborations)

- Collaborations are at the heart of our activities:
 - Supply of samples
 - Most important: supply of open questions, issues, challenges
 - Interactive interpretation of results
 - Joint discussion of potential modifications
 - Involvement in implementing modifications
- Great collaboration partners in the PEC WG:
 - U Hawaii (E. Miller et al.): WO₃, W(X)O(Y)₃, Cu(In,Ga)(S,Se)₂
 - NREL (M. Al-Jassim et al., J. Turner et al.): Zn(O,N), III-V-SC
 - UC Santa Barbara (E. McFarland et al.): Fe_2O_3 et al.
 - MVSystems (A. Madan et al.): SiC
 - Stanford U (T. Jaramillo et al.): WS₂, MoS₂
 - LLNL (T. Ogitsu et al.): Theory
 - Open for more!

UV/Soft X-ray Spectroscopies (Approach)

High dynamic range XPS, UPS, Auger, IPES

High resolution XPS, UPS, Auger

Scanning Probe Microscope

Sample preparation and distribution

SALSA: Solid And Liquid Spectroscopic Analysis at Beamline 8.0, Advanced Light Source, LBNL

Technical Challenges (the big three)

Material Characteristics for Photoelectrochemical Water Splitting

After John Turner, NREL

Efficiency – the bulk band gap (E_g) must be at least 1.6-1.7 eV, but not over 2.2 eV

Material Durability – semiconductor must be stable in aqueous solution

Energetics – the surface/interface band edges must be optimized with respect to the H₂O redox potentials

All must be satisfied simultaneously

Requirements for PEC Materials (Relevance)

- Chemical stability
- Optimized bulk band gap for photon absorption
- Optimized band edge positions at the relevant surfaces

Impact of Mo alloying on WO₃ thin films studied by soft x-ray spectroscopy

With: Nicolas Gaillard and Eric Miller

Hawaii Natural Energy Institute, School for Ocean, Earth Science, Technology, University of Hawaii, Manoa, HI

For more details, please also see PD032 and PD054

Comparison: WO₃ and WO₃:Mo (Accomplishments) UPS **IPES** CBM WO₃:Mo WO₂ CBM CBM -4 UPS E ¦F E_F H⁺/H SE cutoff

Comparison: WO_3 , WO_3 : Mo, and WO_3 : Mo (300 nm) / WO_3 (2 μ m) bilayer

Current-potential characteristics in 0.33 M H_3PO_4 under chopped simulated AM1.5G illumination (scan rate: 25 ms/V)

JMR **25**, 45 (2010)

Impact of PEC testing on a-SiC thin films from the viewpoint of soft x-ray spectroscopy

With:

Feng Zhu, Jian Hu, and Arun Madan MVSystems, Inc.

Todd Deutsch and John Turner

National Renewable Energy Laboratory, Golden, CO

For more details, please see PD032, PD035, and PD053

Impact of PEC testing on a-SiC (Accomplishments)

- a-SiC samples:
 - B: untested
 - Y: 2E Chopped light, pH2 PO₄ buffer, -2V vs Ref to 0.05V vs Open Circuit, AM 1.5, Chop at 100 mV increments
 - R: Performed chopped light only at AM 1.5, then 24 hr galvanostatic
 @ zero applied current under AM 1.5, pH2 PO₄ buffer
- After extended exposure to the electrolyte (sample R), Si-O/Si-C ratio increases, and the center of the Si-O feature shifts toward higher binding energy (closer to that of SiO₂)

Impact of PEC testing on a-SiC (Accomplishments)

- Si 3d occupied PDOS of a-SiC samples is closer to that of a-Si than other Si references
- Spectral weight near Fermi edge increases after PEC test (sample Y), but decreases after extended exposure to the electrolyte (sample R)

Impact of PEC testing on a-SiC (Accomplishments)

- All curves were fitted by three Voigt functions and one linear background
- C-O contribution is doubled after extended exposure to the electrolyte (sample R)
- C-Si contribution diminishes greatly after extended exposure to the electrolyte (sample R)

a-SiC Summary

- Extended exposure of a-SiC to acidic electrolyte greatly increases of oxygen-related contents (both C-O and Si-O) and decreases C-Si bonds on the sample surface
- Spectral weight near Fermi energy increases after PEC test, and decreases after extended exposure to the electrolyte - indications of change of chemical environment and valence band maximum (relevant for redox-reactions) at the surface

Investigation of the impact of PEC testing on CuGaSe₂ thin films

With:

Jess Kaneshiro, Nicolas Gaillard, and Eric Miller

Hawaii Natural Energy Institute, School for Ocean, Earth Science, Technology, University of Hawaii, Manoa, HI

Todd Deutsch and John Turner

National Renewable Energy Laboratory, Golden, CO

For more details, please see PD032, PD035, and PD055

CuGaSe₂ thin film surfaces before and after acid exposure and PEC testing (Accomplishments)

Mg K_{α} XPS survey spectra

• After exposure to acid (samples B and E), surface content of copper and selenium increases

- Both Cu and Se intensity increases after exposure to acid (sample B) and after PEC testing (sample E) – increase is largest after acid exposure
- SeO_x present at the surface of control sample (15% Se contribution), but is removed when exposed to acid

- Unlike Se and Cu, Ga decreases with exposure to acid and testing!
- Ga peak positions shift, indicating significant changes in chemical environment. But directions vary for different core levels (due to valence band nature of Ga 3d?)?

Impact of testing/acid on Se atoms in CuGaSe₂ (Accomplishments)

- Untested sample (A) shows Se M_{2,3} emission with weak features at higher energy indicative of oxidized selenium (agree with XPS)
- After being exposed to acid for 24 hr (B), pronounced sulfate and selenate features
- Tested sample (E) has weaker sulfate features and stronger CuGaSe₂ Se M_{2,3} emission
- Sample exposure to H₂SO₄ results in sulfate formation/deposition on surface

CuGaSe₂ summary

Exposure to H₂SO₄ changes the composition at CuGaSe₂ surface

– Copper and selenium increase

- Gallium decrease (dissolution?)

 Reduction of Selenium oxides and sulfate formation as a result of acid exposure

Surface Composition of Fe₂O₃ Thin Films – correlation with PEC performance

With: A. Forman, A. Kleiman-Shwarsctein, and Eric McFarland

University of California, Santa Barbara

For more details, please see PD032 and PD034

Overview

- UCSB has synthesized Fe₂O₃ thin films as schematically shown on right
- Samples were calcined at for 4 hours at the temperature indicated
- Films calcined at 500°C exhibited a "bathtub" shaped IPCE thickness-dependence not seen in 700°C films

UCSB initially reported sample thickness dependence (when annealed at 500°C)

• Above 100 nm, performance improves up to 500nm films (not shown)

• Annealing at 700°C appears to stabilize sample

IPCE data from Alan Kleiman and Arnold Forman University of California, Santa Barbara

Survey Spectra of Fe_2O_3 films with varying thickness, before and after calcination (Accomplishments)

- Calcined samples
 (700°C for 4 hours) are
 represented by bold
 font (samples 1-4)
- XPS spectra of calcined samples show Ti peaks not present in uncalcined samples

Effect of calcination on thin Fe₂O₃ samples (Accomplishments)

Ti emerges in an annealing series! (Accomplishments)

- Annealing series experiments (Pt surface sample/0 nm Fe) show the emergence of Ti between 650°C and 700°C
- TiO₂ seen when annealed in air

SEM Images of Film Surfaces

10 nm Calcined Film

200 nm Calcined Film

Images courtesy Alan Kleiman and Arnold Forman University of California, Santa Barbara

- Side view shows needle and island growth on calcined samples
- Islands begin to overlap on thicker films resulting in more complete coverage

Summary of Fe₂O₃ results

- At a calcination temperature of 700 C, Ti diffusion from the substrate to the Fe₂O₃ surface occurs
- In thin Fe₂O₃ films, Pt signals are observed at the surface
- Ti appears to "stabilize" IPCE performance in samples calcined at 700 C (w.r.t. film thickness)
- Dip in IPCE performance of films calcined at 500 C is speculated to be due to the Pt catalytic response in thin films and increasing photocatalytic response corresponding to increase in Fe₂O₃ (Ti) film thickness

Research Plan & Basis for Continuation of Research (Proposed Future Work)

- Continue the collaborations with our existing partners and bring new partners "on board"
 - New materials classes: (In,Ga)(P,N) with NREL, WS₂ and MoS₂ with Stanford
 - Correlation with theory from new WG partner (LLNL)
- Determine electronic and chemical properties of various PEC candidate materials (see list on collaboration slide) and answer as many questions as possible
- Study the impact of material modifications by the collaboration partners (e.g., alloying, doping, ...)
- Study material durability after exposure to a variety of ambient environments
- Find unexpected things (e.g., guest species)

Summary (Relevance)

- Approach allows unprecedented insight into the electronic and chemical structure of PEC candidate materials from within (and outside of) the DOE WG
- Portfolio of experimental techniques ranging from "standard" to "pushing the edge forward"
- Requires close collaboration with synthesis groups, theory groups, and other characterization groups
- Results will be as good as the questions we ask!
- Addresses materials performance, lifetime, and cost directly or indirectly through collaboration partners