Advanced Sealing Technology For Hydrogen Compressors

Hooshang Heshmat, PhD Mohawk Innovative Technology, Inc. June 7, 2010

Project ID # PD060

This presentation does not contain any proprietary, confidential or otherwise restricted information.

Overview

Timeline

- Start 15 Aug 2008
- End 14 Aug 2010
- 96 Percent Complete

Budget

- Total proposed project funding
 - \$743,000 DOE SBIR
 - \$0 (SBIR No Cost Share)
- \$372,300 FY08 Funding
- \$370,600 FY09 Funding

Barriers

- Hydrogen Delivery Compressor
 - Reliability
 - System Cost
 - H₂ Leakage
 - Contamination

Partners

 Lead: Mohawk Innovative Technology, Inc. (MiTi)

Relevance

Objective:

- Develop and demonstrate feasibility of using a close clearance, non-contacting, and dynamic compliant foil seal in hydrogen and/or natural gas pipeline compressors.
 - Flow to 1,000,000 kg/day
 - Pressure rise from 300-500 up to 1,200-1,500 psig
 - Contaminant-Free/Oil-Free

			Project Target
Category	2005 Status	FY2012	FY2017
Reliability	Low	Improved	High
Energy Efficiency	98%	98%	>98%
Leakage	Undefined	TBD	< 5%
Maintenance (% of Total Capital Investment)	10%	7%	3%
Contamination	Varies by Design		None

Hydrogen, Fuel Cells & Infrastructure Technologies Program

- Revise the full-scale seal design from Phase I: full size 2.5" diameter, differential pressures to 250 psig
- Perform additional static testing in air and He to validate the design
- Fabricate the final full-scale design
- Test seals under dynamic conditions (up to 60,000 rpm and 100 psi in air, 250 psi in He)
- Demonstrate that performance capability meets the specified needs of a hydrogen transportation and delivery compressor

Project Milestones

Month/Year	Milestone or Go/No-Go Decision
Jan/09	Project Milestone: Preliminary Seal Testing
May/09	Project Milestone: Seal and Dynamic Test Rig Design
Aug/09	Project Milestone: Seal and Test Rig Fabrication
Feb/10	Project Milestone: Seal Dynamic Testing
June/10	Project Milestone: Update Seal Design

Oct/10 **DOE Milestone:** Down select novel compression technology for hydrogen delivery

Technical Accomplishment

Seal Selection

- Types Considered
 - Labyrinth
 - Brush
 - Honeycomb
 - Abradable
 - Dynamic Compliant Foil
- Issues
 - Leakage
 - Clearance
 - Differential Pressure
 - Wear Life and Debris
 - Material Compatibility

Foil Seal Concept

8.5" Foil Seal Developed at MiTi andIndependently Verified atNASA to 30,000 rpm

US Patent: 6505837 Compliant Foil Seal

Foil & Labyrinth Seal Comparisons

Impact of Seal Design For H2

- Dynamic Compliant Foil Seal
 - Non contact, small clearance and compliant structure
 - Seal Design Parameters:
 - Differential Pressure Across Seal: 80-250 psig
 - Total Leakage = 13 to 30 lb/min
 - Leakage <= 2% of Total Compressor Flow

Reduces Required Compressor Power by 3,000 HP

Seal Design Analysis

- Calculate hydrodynamic pressure using MiTi Elastohydrodynamic Software (Finite Difference Analysis, FDA)
- Input to structural FEA to calculate deformation and stiffness

Single Pad Pressure Profile From Hydrodynamic Analysis

Full FEA Modeling of Face Seal

Coupled Finite Difference and Finite Element Seal Analysis

Deformed Smooth Foil (Visually Enhanced)

Deformed Seal Plate (Visually Enhanced)

FEA Modeling of Radial Seal

Interpolated hydrodynamic plus hydrostatic pressure applied to inner smooth foil

Un-deformed and deformed inner smooth foil under combined hydrodynamic hydrostatic pressures

Static Seal Test Rig

Modified Back Face for Seal Test Chamber Elevated Downstream Pressure

Preliminary Seal Test Data

Prior to conducting additional tests, the flow factor data from Phase I were reviewed.

The flow factor is defined as

 $\dot{m} = mass \ flow \ in \ lbm \ sec$ $T = Average \ Upstream \ Temperature \ in \ Degrees \ Rankine$ $P_u = Average \ Upstream \ Pressure \ (psia)$ $D = Shaft \ Sealing \ Surface \ Diameter \ (in)$

Corrected Seal Flow Factor for Helium

Flow Factor Adjustment Was Based on Differences in Gas Constants Between Helium and Air

Flow Factor for Air, He, and Hydrogen

Measured And Predicted Flow Factor For Air And Helium And Hydrogen

Low-Speed Electric Motor Driven Test Rig

With Heaters for High Temperature Tests

Seal Leakage vs Pressure and Speed

Leakage Increases With Pressure And Decreases With Speed

High-Speed Instrumented Test Rig

Mohawk Innovative

Test Spindle & Housing

Testing of Different Seal Configurations

Leakage Increases With Pressure And Decreases With Speed

Comparison Between Air and He

Dynamic Tesing with Air and Helium at 70 psi under 250F Temperature

Dynamic Testing with Helium at 70 psi under Different Temperatures

Leakage is Lower for Helium Than Air and Decreases with **Temperature and Speed**

Lubricating Coatings and Durability

Mohawk Innovative

Future Work for FY10

 Complete Final Report Including Recommendations for Implementation of the New Foil Seals in Hydrogen Centrifugal Compressor

Project Summary

- Coupled Elasto-Hydrodynamic Seal Design Analysis Methodology Developed
- Static and Dynamic Seal Testing Completed
- Compliant Foil Seal Operation Demonstrated
 - Close Clearance Film Riding Seal Operation Demonstrated
 - Testing at Pressures Above 200 psig Successfully Completed
 - Effects of Temperature, Speed, Solid Lubrication, Seal Configuration Determined
 - Low Flow Factor and Leakage- Substantially Less Than Labyrinth Seals

Hooshang Heshmat, PhD 518 862-4290 x-12 hheshmat@miti.cc