

AQUEOUS PHASE BASE-FACILITATED REFORMING (BFR) OF RENEWABLE FUELS

Brian D. James (PI) and Julie Perez Directed Technologies, Inc.

2010 DOE Hydrogen Program Annual Merit Review 7 June 2010

> Project ID # PD063

This presentation does not contain any proprietary, confidential, or otherwise restricted information

PROJECT OVERVIEW

Timeline

- Start:
 - June 2008 (Phase I)
 - Sept 2009 (Phase II)
- End: Aug 2011
- Percent Complete:
 - Phase 1– Completed
 - Phase 2 20%

Budget

- Total project: \$850k
- Phase 1- \$100k
- Phase 2 \$750k
 - Period 1: \$375k
 - Period 2: \$375k
- No Contractor Share

Barriers

- A. Reformer Capital Costs
- B. Reformer Manufacturing
- D. Feedstock Issues
- E. Greenhouse Gas Emissions

Partners

- ECD (Ovonics)
- SenTech, Inc.
- Western Michigan University
- Sierra Marine Technologies, Inc.

OBJECTIVES & RELEVANCE

The project focus is to advance the BFR technology with experiments and define a market segment where commercialization of this technology is economically attractive.

Phase 2 Objectives

- Demonstrate a continuous BFR reactor
- Identify optimum operating parameters
- Determine optimum BFR facility size, markets, and impacts

DOE Metric	Target	BFR Projected
Total Hydrogen Cost (delivered), \$/gge	\$3.80	\$2.27 - \$3.26ª
Production Unit Capital Cost (1500kgH ₂ /day)	\$1.0M	\$0.664M – 1.59M ^b
Production Unit Energy Efficiency	72%	79%

^a In 2005\$USD, includes only H₂ production costs, using H2A standard economic assumptions.

^b Linearly scaled down from a 2TPD modular production system.

ADDRESSING BARRIERS

Relevance

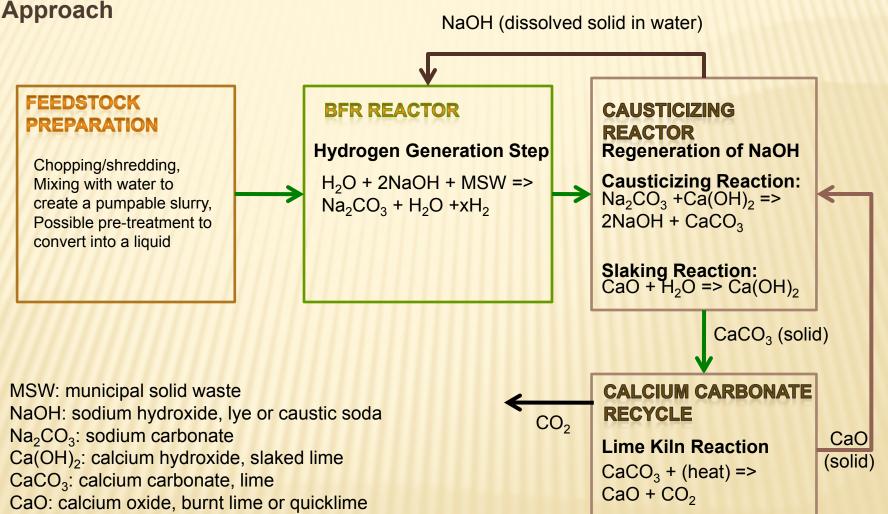
DOE Barriers	BFR Project Responses
A. Reformer Capital Costs	Process eliminates need for WGS & PSA
B. Reformer Manufacturing	Modular designed unit
D. Feedstock Issues	Process allows for renewable fuels, fuel flexibility, and co-location market synergies
E. Greenhouse Gas Emissions	CO ₂ is sequestered in carbonate

BFR PROCESS MAIN FEATURES

Approach

- Converts Renewable Fuels: Variety of liquid and solid renewable fuels into hydrogen. Main focus: MSW components (i.e. paper, grass, wood, & food waste)
- Reforms in Liquid Phase: Efficient compression of feedstock and water
- Operates at Low Temperatures: Reaction temperatures are 250-350°C thereby reducing energy requirements and allowing use of low cost metal components
- Produces Excess Heat: The BFR reaction is exothermic

eliminating intra-reactor heat exchange


- Creates High Purity Hydrogen Gas: Typically produces
- 98%+ H_2 output gas with only ~1% methane (plus H_2O vapor)
- Eliminates Water Gas Shift: No CO, therefore no WGS

BASIC REACTIONS

UNIQUENESS & CHALLENGES

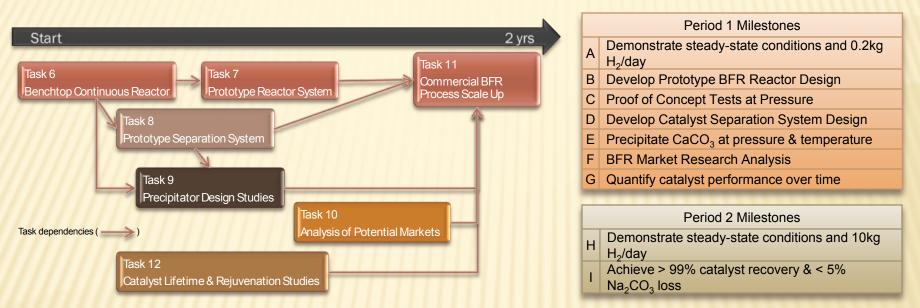
Approach

UNIQUE ATTRIBUTES

- Aqueous phase reaction
- Moderate temperature: 250° - 360°C
- Moderate pressure: <500psi</p>
- Flexible feedstock: but focused on MSW
- Non-precious metal catalysts
- Produces nearly pure H₂ gas (98+% purity)
- Capture feedstock carbon in solid carbonate form
- Pathway to ~\$3/kg hydrogen

PROCESS CHALLENGES AT PROJECT START

- Residence time is minutes (not seconds)
- Phase 1 catalyst is in powder/pellet form therefore it needs to be captured and recycled, adding complexity
- Fouling and separation of catalyst from unreacted feedstock is a concern
- Economics seem to favor a Full Recycle Configuration: unfortunately this is the non-CO₂ sequestration pathway



APPROACH

8

Task	Milestone	Accomplishments
Task 6 Benchtop Continuous Reactor	A	Reactor sized. Parts list created. Hardware sourced. Testing pre- treated feedstock to develop liquid fuel and simplified design.
Task 7 Prototype Reactor System	B, H	Design progressing based on work from Task 6.
Task 8 Prototype Separation System	C, D, I	Feedstock work in Task 6 has modified this task. Catalyst containment and monolithic catalysts under investigation.
Task 9 Precipitator Design Studies	E	Analysis of commercial re-burnt lime completed. Test equipment calibrated. Testing at 100°C underway. Higher temperatures will follow.
Task 10 Analysis of Potential Markets	F	Task start delayed.
Task 11 Commercial BFR Process Scale Up		On schedule to start in Month 13.
Task 12 Catalyst Lifetime & Rejuvenation Studies	G	Task start delayed.

SIMPLIFYING THE HARDWARE DESIGN

Technical Accomplishments & Progress

FACTORS COMPLICATING BFR DESIGN

Solid Feedstock

 Potential for unreacted waste in output stream from reactor Could cause catalyst fouling

Powdered Catalyst

 Mixed with solid fuel & water · Requires catalyst separation and

transport to front of reactor

NaOH Concentration Tradeoffs

- Tradeoff between three factors
- H₂ Yield: prefers high concentration
 Causticizer: prefers low concentration
 Oper. Press: prefers high concentratio

PHASE 2 SIMPLIFIED DESIGN

Conversion to Liquid Feedstock

- Solid-to-liquid fuel dissolution in batch reactor
- Filtration required upstream of reactor

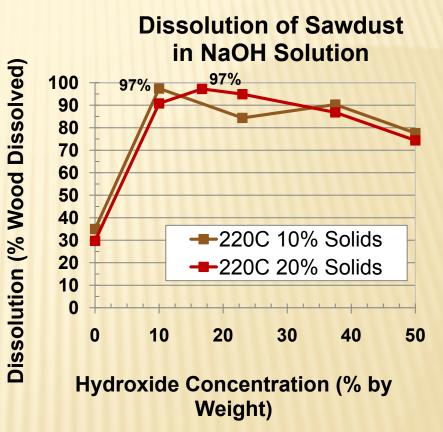
Monolithic Catalyst

- Made possible by liquid fuel
- Fixed catalyst allows for:
- · Liquid (not slurry) pumping into reactor
- Elimination of catalyst separator

Solution Additives

 Raises boiling point thereby lowering the operating pressure for reactor Inert to the BFR reaction

Recent innovations result in a significantly simplified Phase 2 design.

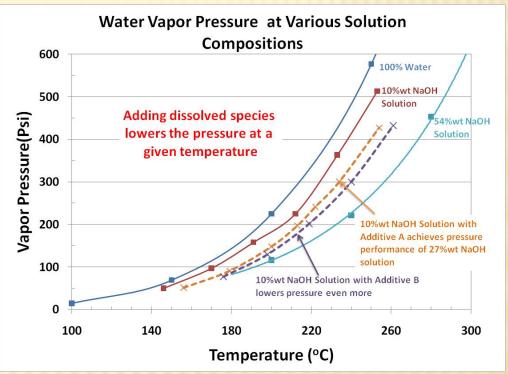


PHASE 2 DISSOLUTION TESTS

Technical Accomplishments & Progress

- Dissolving the solid fuel into a liquid fuel allows:
 - Use of liquid instead of slurry pumps
 - Monolithic catalyst
 - Elimination of catalyst separation
- >40 tests on a variety of fuels & conditions
- Typical conditions:
 - □ 200-240°C
 - 10-20% NaOH
 - 10-15 minutes
 - <200psi</p>

Greater than 90% dissolution is achieved at low temperature (~220°C) and low hydroxide concentration (~10%)

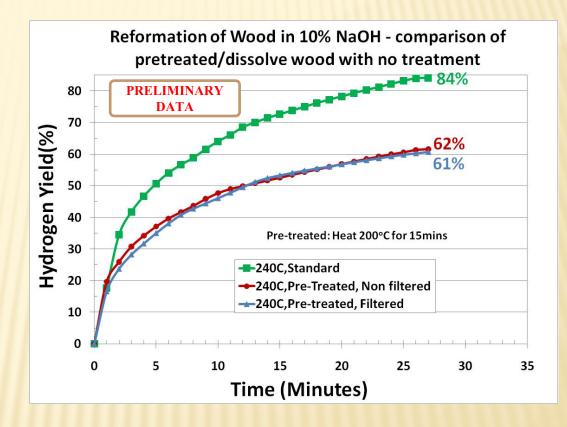


PRESSURE REDUCING ADDITIVES

Technical Accomplishments & Progress

- Dissolved NaOH in the BFR reactor significantly raises the boiling point, thereby allowing a high temperature liquid reaction at a lower pressure.
- By dissolving an additive in the reactants' solution, the pressure can be reduced further.
- This allows decoupling of the NaOH concentration and the operating pressure.
- Additive composition is proprietary.
- Work underway to verify that additives don't impede BFR or causticizing reactions.

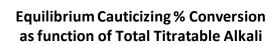
Additives can be used to lower pressure, thereby decoupling pressure & NaOH concentration.

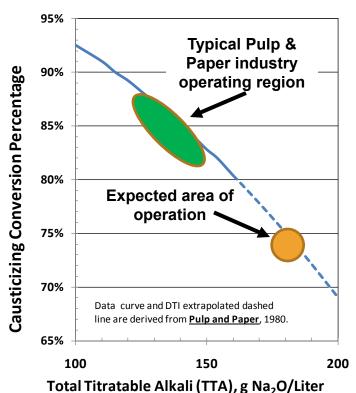


Technical Accomplishments & Progress

- Wood (sawdust) was pre-treated to create a dissolved liquid fuel.
- H₂ Yield from dissolved liquid should be very similar to H₂ Yield of the solid-wood BFR because:
 - Mass fraction of wood converted to a liquid is >90%
 - Same reactions are occurring, in two separate reactors
- A lower H₂ Yield was observed from dissolved liquid
- Experiments will continue to optimize conditions and identify loss mechanism.

Unexpected drop-off in H₂ Yield when operating on dissolved liquid fuel. Investigation and condition optimization will continue.




DEFINING NaOH CONCENTRATION

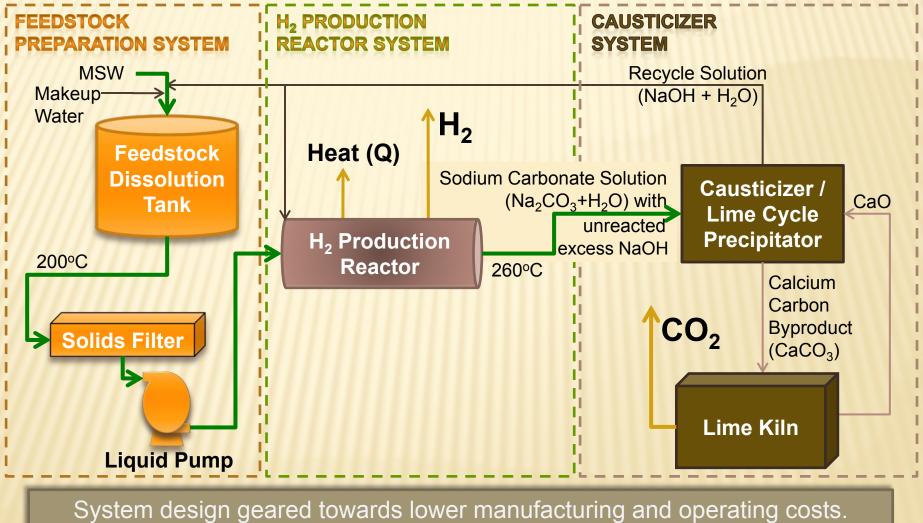
Technical Accomplishments & Progress

DIRECTED TECHNOLOGIES INC

- Components modeled to examine composition changes throughout system
- High NaOH concentration leads to low conversion % of NaOH into Na₂CO₃
- Consequently, we are driven to a NaOH concentration of ~11%wt to achieve a stable balance within the recycle loop
- While causticizing is conducted commercially in the Pulp & Paper industry, conditions are slightly different for the BFR system
- Experiments at WMU are underway to verify:
 - basic causticizing kinetics & equilibrium relationships
 - kinetic rate at elevated temperature and pressure
 - exact performance at expected conditions (including the presence of pressure suppressing additives)
- Conversion Efficiency = NaOH/(Na₂CO₃ + NaOH)
- Total Tritratable Alkali (TTA) = NaOH + $Na_2S + Na_2CO_3$
- where all concentrations are expressed in Na₂O equivalents
 - 1 kg NaOH = 0.775 kg Na₂O
 - $1 \text{ kg Na}_2 \text{CO}_3 = 0.585 \text{ kg Na}_2 \text{O}_3$

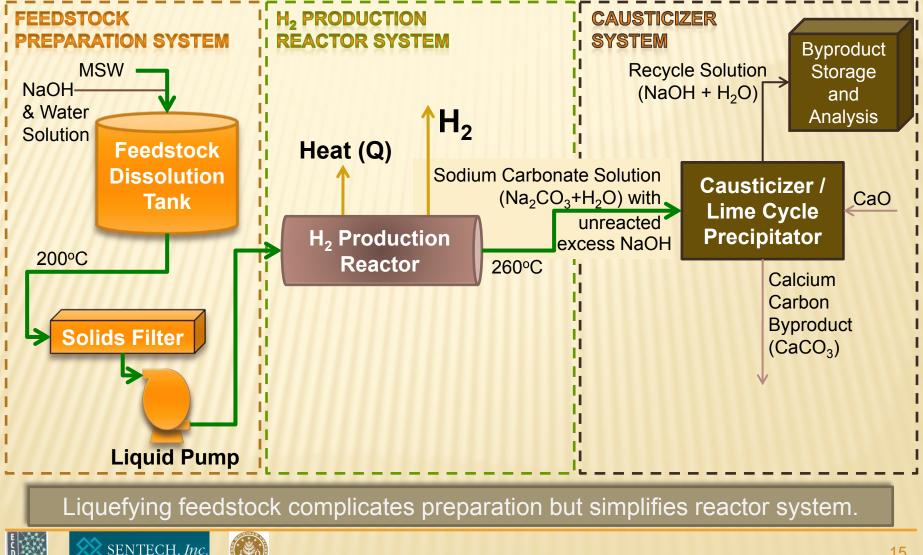
(a measure of alkali concentration in terms of Na₂O equivalent)

Causticizer modeling indicates a required 11%wt NaOH concentration. Experiments underway to verify this value.



FUTURE SYSTEM EMBODIMENT

Technical Accomplishments & Progress



LABORATORY SYSTEM

Technical Accomplishments & Progress

CO₂ EMISSIONS & NET IMPACT

Technical Accomplishments & Progress

Two configurations proposed in Phase I:

- "Sequestration" which captures carbon in solid CaCO₃ form but requires CaO input
- "Full Recycle" which recycles all intermediaries and releases CO₂.
- Initial Logic: BFR system could lead to net sequestration of carbon by capturing carbon in solid calcium carbonate form Feedstock + CaO + H₂O → H₂ + CaCO₃
- Current Logic: Because production of CaO releases CO₂, the "sequestration" configuration is not a net sequester of carbon.
- The "Full-Recycle" configuration is:
 - Favorable in economic terms
 - Can result in zero net CO₂ release if renewable feedstock (wood, paper, MSW, etc.) is used

Not originally included in analysis Carbonaceous Feedstock CO₂ | CaCO₃ CaO **BFR** CaO Η, Prod **System** CaCO₂ "Full-Recycle" Configuration Carbonaceous Feedstock **BFR** Η, **System**

CO₂

"Sequestration" Configuration

COLLABORATIONS

FOR BOTH PHASE I AND PHASE II:

ECD/Ovonics

- Subcontractor
- ECD is technology originator/patent-holder
 - Ben Reichman/Willy Mays
- BFR concept development
- BFR experiments
- Fabrication
- Sentech, Inc.
 - Subcontractor
 - Elvin Yuzugullu lead
 - Marketplace analysis
 - Macroeconomic analysis

NEW FOR PHASE II:

- Western Michigan University
 - Subcontractor
 - Prof. John Cameron
 - Pulp & Paper expertise
 - Causticizer configuration design
 - Causticizer operating conditions

Sierra Marine Technologies

- Subcontractor
- Prototyping
- Custom fabrication

PROPOSED FUTURE WORK

FY10

- H₂ generation experiments in a continuous flow-through reactor
 - Produce 0.2kg H₂/day
- Design fixed catalyst bed
- Study other causticizer options
- Begin evaluation of catalyst lifetime
- Investigate design option where NaOH concentration can be changed between reactor and causticizer

FY11

- Increase scale of continuous reactor
 - Produce 10kg H₂/day
- Study commercial and market options
- Optimize causticizer design
- Develop commercial integrated system design

SUMMARY

Relevance

 Project aims at reducing petroleum use by developing and validating a hydrogen production method using renewable feedstock (e.g. MSW)

Approach

 Design and test a continuous aqueous reactor based on Base Facilitated Reforming (BFR) and determine optimum operating conditions

Technical Accomplishments & Progress

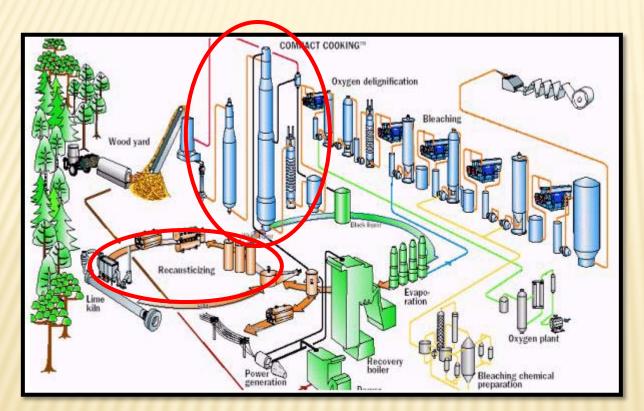
- Developed conceptual process designs
- Conducted feedstock dissolution experiments (pre-treatment to dissolve solid fuel into a liquid fuel)
- Improved/Simplify system to reflect feedstock dissolution to liquid fuel
- Overall process and operating conditions optimization
- Modeling of causticizer system and initiation of bench-top experiments

Collaborations

- Active partnership with ECD, SenTech, WMU, and Sierra Marine Technologies
- Proposed Future Research (2nd year of Phase 2 SBIR grant)
 - Fabricate and assemble continuous-flow BFR reactor and test at various operating parameters (10kg H₂/day)

SUPPLEMENTAL SLIDES (AND PHASE 1 RESULTS)

Task 2: Distributed Reforming of Renewable Liquid Feedstocks


- 4 Down-select research for distributed production from distributed renewable liquids. (4Q, 2010)
- 5 Verify feasibility of achieving \$3.80/gge (delivered) from distributed renewable liquids. (4Q, 2012)
- 6 Verify feasibility of achieving less than \$3.00/gge (delivered) from bio-derived renewable liquid fuels (4Q, 2017)

BFR AND KRAFT PROCESS SIMILARITIES

The Kraft Process for Making Paper

• Our process shares many similarities with the Kraft Process but target process conditions are not identical.

Prof. John Cameron,
Western Michigan, is key participant/consultant.

PHASE 2 FEEDSTOCK PREPARATION EXPERIMENTS

Status:	 >40 tests conducted to date Conducting literature review Conducting batch tests (using Phase 1setup)
Approac h:	NaOH hydrolysis to achieve peeling and glycosidic cleavage of cellulose. High rate, high conversion to liquids is possible due to elevated NaOH concentration and temperature.

Primary factors in dissolution kinetics

Metrics	Preliminary Goals	Independent Variables
Temperature/Pressure	<=220°C at <200psi	Temperature
Time to dissolution	<10 minute residence time (to match H ₂ prod. cycle time)	Caustic concentration
% H_2 capture (i.e. theoretical H_2 prod. capacity of dissolution liquids)	80+% H ₂ Capture	Dissolution Catalysts
Liquid composition		

PHASE 2 FEEDSTOCK DISSOLUTION

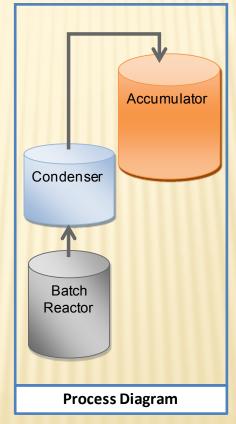
Main MSW Constituents	Description	Approx. Mass %	Form	Dissolution Products		
Cellulose	Glucose polymer	40-50%	60-90% Crystalline			
Hemicellulose	Polymers of other sugars	20-30%	Amorphous	Sugars, acids,		
Lignin	Complex polymers built from propane phenyl units	20-30%		100+ different organic compounds		
Extractives	ives Everything else, fatty & resin acids, etc.					
Normal K	Kraft Pulping		BFR			
<=175°C: highe cellulose break	er temp. leads to down	~200°C: want to breakdown cellulose				
~1-3M Base so	lution	High Molarity: converts cellulose structures from crystalline to amorphous, easier to break down				
Rate: 1-2 hours		Rate: Expect	: 8+ times faster,	~10 minutes		

PHASE 2 CAUSTICIZER EXPERIMENTS

Status:	 Computations & literature seach conducted Hardware specification Preliminary testing at 100°C Tests conducted at Western Michigan University (WMU)
Approach:	Experimental determination of kinetic rates at expected temperatures and concentrations

Cauticizer in Kraft Process	Causticizer in BFR Process
~70-100°C	240-350°C
~1-2 atm	300-500 psi
White Liquor	Similar but slightly different composition and molarity

PHASE 1 PROOF OF CONCEPT

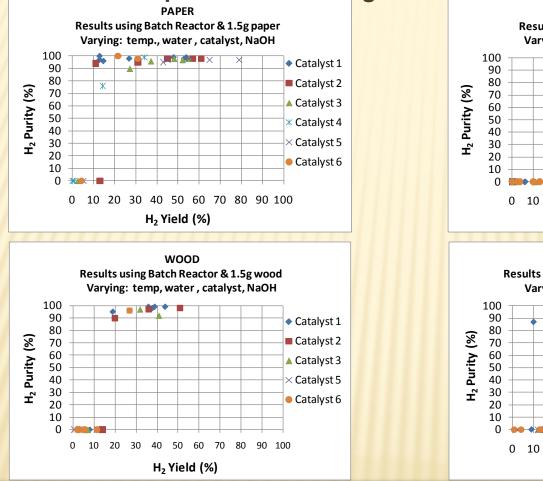

Technical Accomplishments & Progress

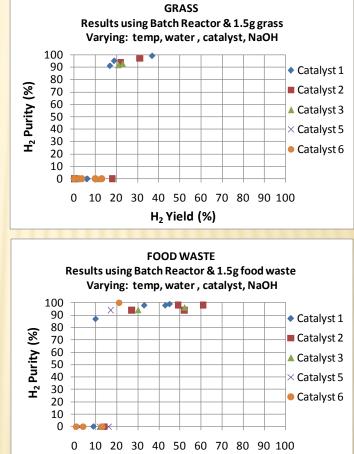
Input variables:

- type of feedstock
- type of catalyst
- catalyst amount
- water amount
- NaOH amount
- Temperature

Output measurements:

- H₂ yield (as a % of stoichiometric H₂ production)
- H₂ purity (% H₂ of dry product gas)
- total liters of product gas
- product gas composition
- H₂ yield vs. time

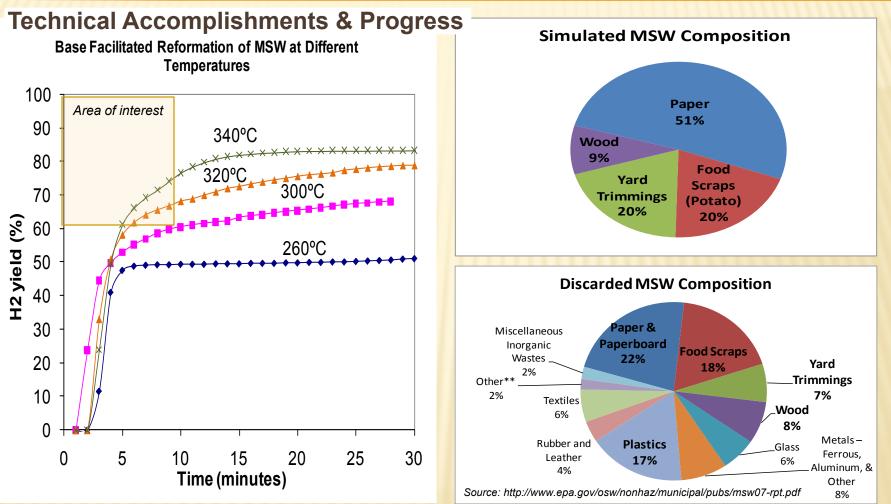




PHASE 1 EXPERIMENTAL RESULTS

H₂ Yield (%)

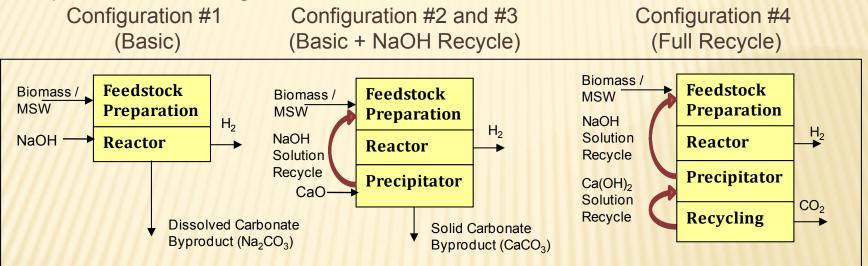
High H₂ purity achieved under many different catalysts/conditions.



DIRECTED TECHNOLOGIES

PHASE 1 MSW RESULTS

With < 7 minutes residence time and only 300°C, BFR can achieve H_2 yields >50%.



BASE-FACILITATED REFORMING (BFR)

Three potential basic configurations:

- Uses base materials, such as NaOH, and Ca(OH)₂ as a reactant in the reforming reaction with the organic fuels or biomass
- Nickel based catalysts incite the reaction of biomass with hydroxide materials (NaOH, KOH, etc).
- Liberates the same amount of H₂ as in steam reforming, however, a solid salt Na₂CO₃ is produced instead of CO₂ gas.
- Reaction is often exothermic
- Simple reactor design and low operating temperature allows the BFR reactor to be significantly less expensive

PHASE 1 CO₂ EMISSIONS ANALYSIS

BFR CARBON DIOXIDE EMISSIONS (TONNE/DAY)		CASE 1			CAS	SE 2	CA	SE 3	CAS	SE 4
	Cas	Case 1a: Case 1b:								
	Zero CO2		Full CO2							
		sions		sions						
		NaOH		NaOH						
	prod	uction	produ	uction						
For a 10 tonne H2 / Day Production Capacity										
From production of upstream input materials	(0	395		104		104		1.4	
From transporting input materials to BFR production facility	0.04		0.04 0.22		22	0.22		0		
Directly created in actual BFR reaction	0		0		0		0		109	
From heating lime kiln during recycle process	()	0		0		0		9.0219	
From displacing MSW [if otherwise landfilled (left) or combusted (right)]	-4	1	-4	1	-4	1	-4	-1	-4	-1
NET Carbon Dioxide Emissions (Metric Ton/day)	-4	1	391	396	101	106	101	104	115	118
NET Carbon Emissions (Metric Ton/day) of a 10tonneH2/day MSW Steam Reforming Plant at 70% LHV efficiency	156									
NET Carbon Emissions (Metric Ton/day) of a 10tonneH2/day Natural Gas Steam Reforming Plant at 70% LHV efficiency	78									

- Analysis uses EPA's WAste Reduction Model (WARM) Version 9
- For this analysis, MSW is not considered a renewable fuel (If considered renewable, Case 4 emissions go to near zero).
- Significant CO₂ emissions are from the electricity of NaOH production (via chloralkali process)
- That the net CO₂ emissions from Cases 2, 3, and 4, all of which sequester carbon in carbonate form, were not dramatically lower was a surprising result from Phase 1.
- A search for a non- CO_2 releasing source of CaO was unsuccessful.

PHASE 1 CAPITAL COST ESTIMATES

- Estimated costs: not based on detailed DFMA
- 2 tonne H_2 /day BFR modules: multiple modules can be arrayed in parallel
- 20 inch reactor tube diameter for 2 tonne module: not expected to grow
- Subsystem are also module: don't require specialization between cases
 - Case 2 is the exception due to shared facilities

		Subsystem Cost Summary						
Subsystem	Element Cost	Case 1	Case 2	Case 3	Case 4 \$102,300			
Handling System		\$102,300	\$102,300	\$102,300				
Raw Materials Handling Subsystem	\$102,300							
BFR Reactor System		\$262,420	\$262,420	\$262,420	\$262,420			
Reactor Subsystem	\$20,570							
Gas Collection Subsystem	\$3,850							
Catalyst Separation (Pressurized)	\$150,000							
Solids Separation	\$88,000							
Precipitation Sysem		\$0	\$144,910	\$289,820	\$289,820			
Slaker	\$50,000							
Causitizer	\$100,600							
Clarifier	\$139,220							
Lime Kiln System		\$0	\$0	\$0	\$220,000			
Calcium Carbonate Recycle System	\$220,000							
Assembly		\$37,534	\$52,447	\$67,360	\$90,000			
Miscellaneous		\$40,225	\$56,208	\$72,190	\$96,454			
Total Material Cost		\$442,479	\$618,284	\$794,089	\$1,060,994			
Markup (set for 50% gross margin)		\$442,479	\$618,284	\$794,089	\$1,060,994			
Total Capital Cost		\$884,958	\$1,236,569	\$1,588,179	\$2,121,988			

Total Capital cost between ~\$1-2M for 2 TPD Module

PHASE 1 STANDARD H2A ASSUMPTIONS USED

90% operating capacity factor 10% real rate of return 20 year plant lifetime 2010 start-up All costs reported in 2005 dollars 20 year analysis period 20 years MACRS depreciation schedule 100% equity financing 6 month start-up 100% of fixed costs during start-up 75% of variable operating costs during start-up 75% of revenues during start-up 38.9% total tax rate (federal and state) 15% working capital 1% of direct capital for site preparation 13% of direct capital for eng. & design 20% of direct capital for process contingency \$5000/acre land cost 2% property tax and insurance rate 0.5%/year of direct cost for production maintenance and repairs 2%/year of total direct depreciable costs for unplanned replacement capital \$50/hour burdened labor rate 20% G&A rate (applied to labor)

PHASE 1 HYDROGEN COST PROJECTION

- □ Case 1 Chloro Alkali:
 - High NaOH consumable cost
 - Low selling price of the Na₂CO₃ byproduct
- Case 2 Pulp Mill
 - Low / Med / High byproduct revenues
 - If possible to sell carbonate at the premium price, the hydrogen could be given away for free as the carbonate revenue more than pays for production process
- Case 3 Low Cost Feedstock
 - Low / Med /High byproduct revenues
 - Plant uses its own optimized precipitator
- Case 4 Full Recycle:
 - Most complicated and capital intensive
 - Releases CO₂ into the atmosphere at the plant site.

\$2.27- \$3.26/kgH₂ Most Likely

			Case 1	Case 2				Case 3		Case 4	
		BFR Reactor		BFR Reactor With Precipitator (shared with a Pulp Mill)			BFR Reactor With Precipitator (high pressure, high temperature)			BFR Reactor With Precipitator (high pressure, high temperature) plus Lime Kiln	
	Plant Size	kgH2/day	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	
Feedstoc	:k										
	Туре		MSW	MSW	MSW	MSW	MSW	MSW	MSW	MSW	
	Efficiency (LHV)	%	44%	44%	44%	44%	44%	44%	44%	44%	
	% Yield	%	50%	50%	50%	50%	50%	50%	50%	50%	
	Price	\$/tonne	0	0	0	0	0	0	0	0	
	Usage	kg/kgH2	13.56	13.56	13.56	13.56	13.56	13.56	13.56	13.56	
	C Factor	kgC/kgFeedstock	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	C Production	kgC/kgH2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	H2 Cost Impact	\$/kgH2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
NaOH											
	Price	\$/tonne	380.19	380.19	380.19	380.19	380.19	380.19	380.19	380.19	
	Loss Factor	%	0%	5%	5%	5%	5%	5%	5%	5%	
	Excess Factor	70		070	070	0%	0%	070	0%	0/0	
	Usage	kg/kgH2	21.82	0.99	0.99	0.99	0.99	0.99	0.99	0.99	
	C Factor	kgC/kgNaOH	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	
	C Production	kgC/kgH2	39.28	1.79	1.79	1.79	1.79	1.79	1.79	1.79	
	H2 Cost Impact	\$/kgH2	8.30	0.38	0.38	0.38	0.38	0.38	0.38	0.38	
Na2CO3	Colline Dates	\$/tonne	-165.30	-165.30	-165.30	-165.30	-165.30	-165.30	-165.30	-165.30	
	Selling Price Production		-165.30	-165.30	-165.30	-165.30	-165.30	-165.30	-165.30	-165.30	
		kg/kgH2							0.00		
CaO	H2 Cost Impact	\$/kgH2	-4.35	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
LaU	Bullet.	¢ lhanna	440.20	440.20	440.30	440.30	440.30	440.30	440.20	440.20	
	Price	\$/tonne %	110.20	110.20	110.20	110.20	110.20	110.20	110.20	110.20	
	Loss Factor Usage	% kg/kgH2	0.00	13.91	13.91	13.91	13.91	13.91	13.91	0.70	
	CO2 Factor	kgC/kgCaO	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	
	C Production		0.75	10.43	10.43	10.43	10.43	10.43	10.43	0.52	
		kgC/kgH2									
CaCO3	H2 Cost Impact	\$/kgH2	0.00	1.53	1.53	1.53	1.53	1.53	1.53	0.08	
Lacos						Prem.			Prem.		
	Type of Sale			No sale	Ag. Lime	Lime	No sale	Ag. Lime	Lime		
	Selling Price	\$/tonne	0.00	10.00	-15.00	-300.00	0.00	-15.00	-300.00	0.00	
	Production	kg/kgH2	0.00	24.82	24.82	24.82	24.82	24.82	24.82	0.00	
	H2 Cost Impact	\$/kgH2	0.00	0.25	-0.37	-7.45	0.00	-0.37	-7.45	0.00	
lime Kiln											
	C Factor for C release	kgC/kgCaCO3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.12	
	C Factor for NG usage	kgC/kgH2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.94	
	C Production	kgC/kgH2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.92	
Capital Co											
	Total Cap. Cost										
	(uninstalled)	\$	4,355,980	6,086,691		6,086,691		7,817,402		10,444,940	
	H2 Cost Impact	\$/kgH2	0.47	0.68	0.68	0.68	0.84	0.84	0.84	1.06	
	Energy	\$/kgH2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.29	
Utilities											
	H2 Cost Impact	\$/kgH2	0.10	0.16	0.16	0.16	0.16	0.16	0.16	0.45	
Fixed O&		***									
	H2 Cost Impact	\$/kgH2	0.38	0.41	0.41	0.41	0.43	0.43	0.43	0.46	
H2 Cost S	Feedstock	\$/kgH2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	NaOH	\$/kgH2 \$/kgH2	8.30	0.00	0.00	0.00	0.00	0.00	0.00	0.38	
	Na2CO3	\$/kgH2 \$/kgH2	-4.35	0.38	0.38	0.38	0.38	0.38	0.38	0.38	
	CaO		-4.35	1.53	1.53	1.53	1.53	1.53	1.53	0.00	
	CaCO3	\$/kgH2	0.00	0.25	-0.37	-7.45	1.53	-0.37	-7.45	0.08	
		\$/kgH2	0.00	0.25	-0.37	-7.45	0.00	-0.37	-7.45	0.00	
	Energy Capital	\$/kgH2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.06	
	Decomissioning	\$/kgH2 \$/kgH2	0.47	0.68	0.68	0.68	0.84	0.84	0.84	1.06	
	Fixed O&M	\$/kgH2 \$/kgH2	0.38	0.01	0.01	0.01	0.01	0.01	0.01	0.46	
	TINED DOLIVI	⇒/ Kgri∠	0.56	0.41	0.41	0.41	0.45	0.45	0.45	0.40	
	12 Cost	\$/kgH2	4.80	3.26	2.64	-4.44	3.19				
								2.82	-4.26	2.27	