

Hydrogen By Wire – **Home Fueling System**

P. I. Name: Luke T. Dalton **Organization:** Proton Energy Systems Date: June 7, 2010

> Project ID **#PD067**

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview Timeline

- Project Start: 21 Sep 2009
- Project End: 21 May 2010
- Percent complete: 100%

Barriers

- Barriers addressed
 G: Capital Cost
 - H: System Efficiency

Table 3.1.4. Technical Targets: Distributed Water Electrolysis Hydrogen Production ^{a, b, c}					
Characteristics	Units	2003 Status	2006 Status °	2012 Target	2017 Target
Hydrogen Cost	\$/gge	5.15	4.80	3.70	<3.00
Electrolyzer Capital Cost ^d	\$/gge \$/kW	N/A N/A	1.20 665	0.70 400	0.30 125
Electrolyzer Energy Efficiency ^f	% (LHV)	N/A	62	69	74

Budget

- Total project funding

 DOE share: \$99,990
- Funding for FY10
 - DOE share: \$99,990

Technical Sources

- Hydro-Pac
- W.E.H.
- GTI



Relevance Hydrogen Fueling Pathways

- Continuum of options
 - Large, centralized plants
 - Requires transportation or distribution of fuel
 - Neighborhood fueling stations
 - Compatible with medium-to-large scale PEM Electrolysis
 - Generates fuel closer to end-user
 - Can be renewable
 - Home-based fueling
 - Compatible with small scale PEM Electrolysis
 - Generates fuel in the end-user's garage
 - Can be renewable
- Each generation scale will have its place

Relevance Fueling Infrastructure Challenges

Pace with parallel ramp-up of related vehicles

Relevance Advantages of Hydrogen Home Fueling

Vehicle Type	Range (Miles)	Empty to Full Refueling / Charging Time (Hours)
Plug-in Hybrid Electric (PHEV)	40	4 to 6 (@110V)
Battery Electric Vehicle (BEV)	100	8 to 16 (@110V)
Compressed Natural Gas (CNG)	200-300	* 8 to 16 (potential <6h)
Fuel Cell Hybrid Electric Vehicle (FCV)	300	* 1 to 6 (Targets of study)

Comparison of Residential Fueling Charge Time and Vehicle Range (J. Schneider et. al, NHA 2009)

Relevance Project Objectives

- Define critical requirements for PEM Electrolysis Home Fueling System
 - Technical
 - Define hydrogen production capacity for a recharge time relevant to end-user
 - Estimate electrical service and physical size
 - Capital and operating cost
 - Codes and standards
 - Product safety
 - Operation and maintenance

Approach Task Breakdown

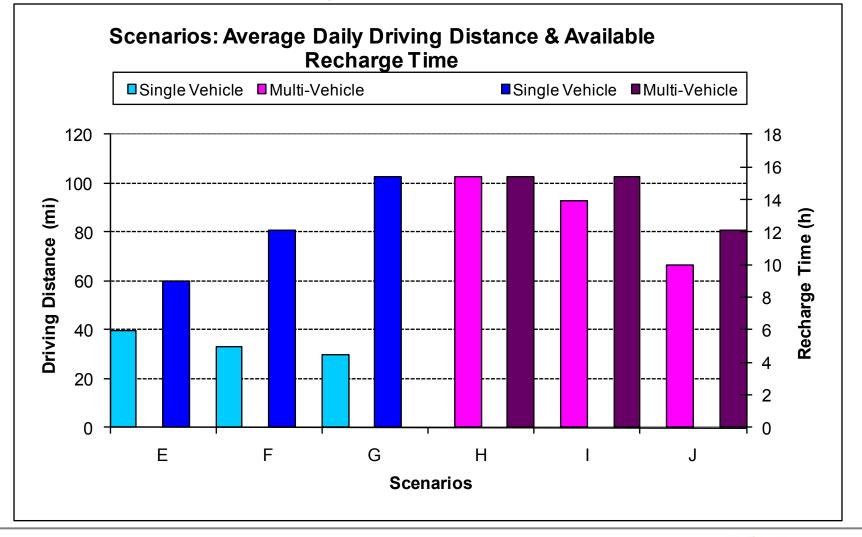
- Task 1.0: Technical Requirements Analysis
 - 1.1 Capacity:
 - 1.2 Efficiency and power usage
 - 1.3 Physical size
 - 1.4 Preliminary design requirements
- Task 2.0: Cost Analysis
 - 2.1 Cost of hydrogen for different vehicle scenarios
 - 2.2 Effect of technology improvements and production volume increases
- Task 3.0: Installation Analysis
 - 3.1 Cost impact of current code compliance environment, and direction of national and international standards
 - 3.2 O&M and energy comparison to other residential appliances

Technical Accomplishments

Task	Task Description	Progress Notes	Completion	
1.0	Technical Requirements Analysis	 Estimated required capacity for a range of vehicle fuel efficiency values and vehicle usage profiles. Estimated physical size, electricity usage. Tabulated product requirements. 	100%	
2.0	Cost Analysis	 Estimated required bill-of-materials. Estimated \$/kg cost for a range of fuel efficiency and vehicle usage profiles using H2A model. 	100%	
3.0	Installation Analysis	 Tabulated list of relevant codes and standards. Estimated cost impact of municipality specific codes and standards environment. Defined maintenance strategy. 	100%	

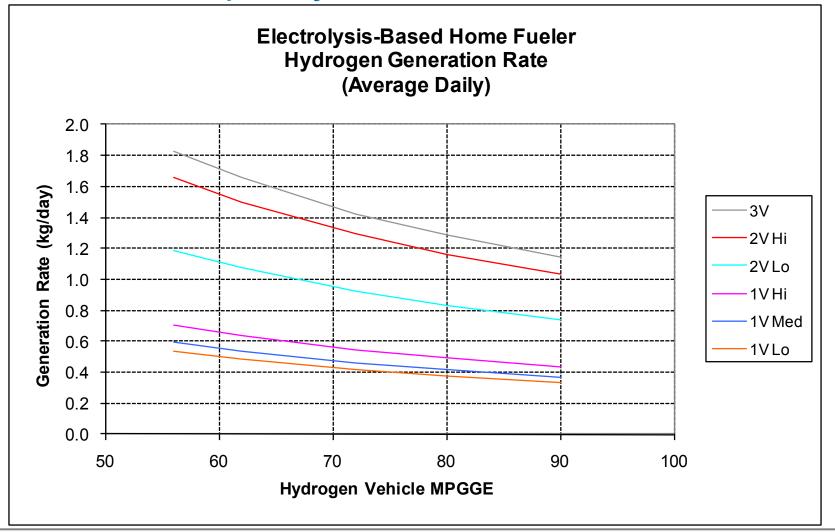
Approach

Task 1.0: Technical Requirements

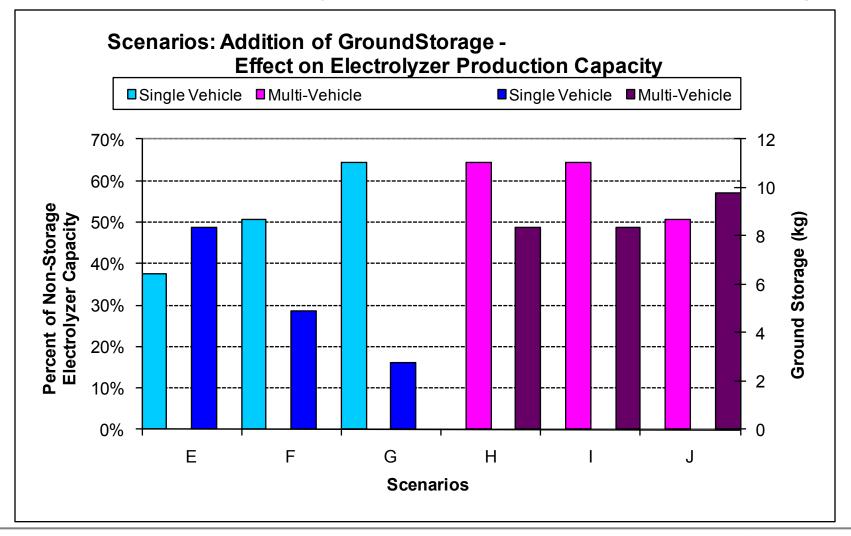

- Estimate high, medium, and low users based on:
 - Commute distances
 - Driving profiles
 - Day-to-day variation
- Estimate available recharge hours (assuming no storage off-board vehicle)
- Data:
 - Average One-Way Commute Miles: 14.5 [1]
 - Average Daily Driver Miles: 32.89 [2]
 - FCV MPGGE (Light Truck): 56.1 [3]

[1] US Department of Transportation, Bureau of Transportation Statistics, Omnibus Household Survey.

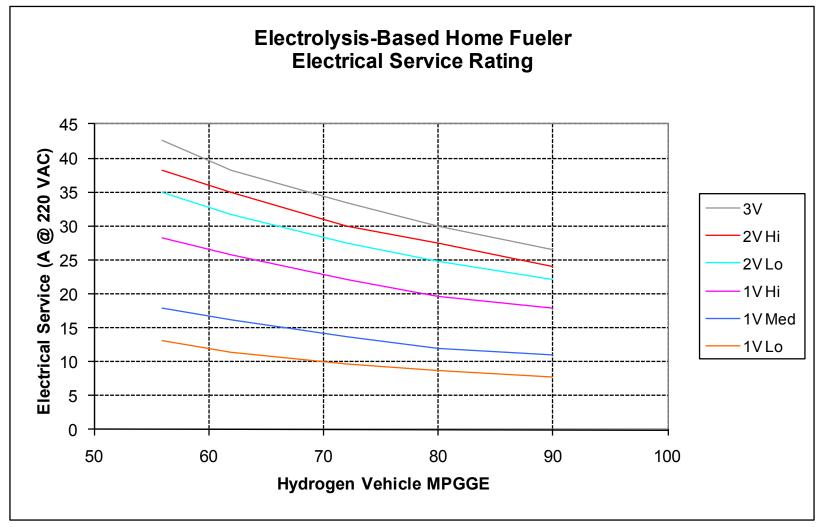
- [2] National Highway Traffic Safety
- [3] http://www.transportation.anl.gov/pdfs/TA/339.pdf



• Task 1.1: Capacity - Scenarios



• Task 1.1: Capacity



• Task 1.1: Capacity – Effect of Ground Storage

• Task 1.2: Electrical Service

Technical Accomplishments Task 1.0: Technical Requirements • Task 1.3: Physical Size – 2' x 3' x 5'

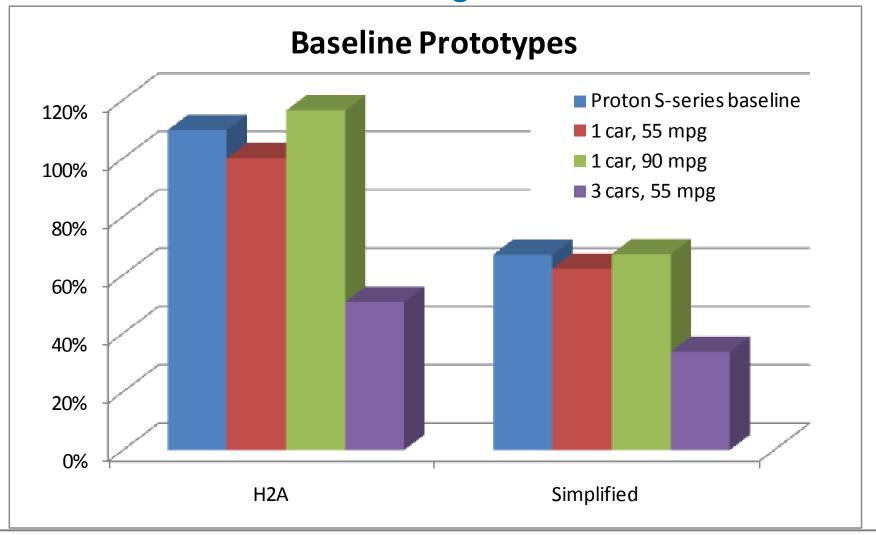
Task 1.3: Physical Size – 2' x 3' x 5'

- Task 1.3: Physical Size
 - With mechanical compression and ground storage footprint and complexity increase greatly

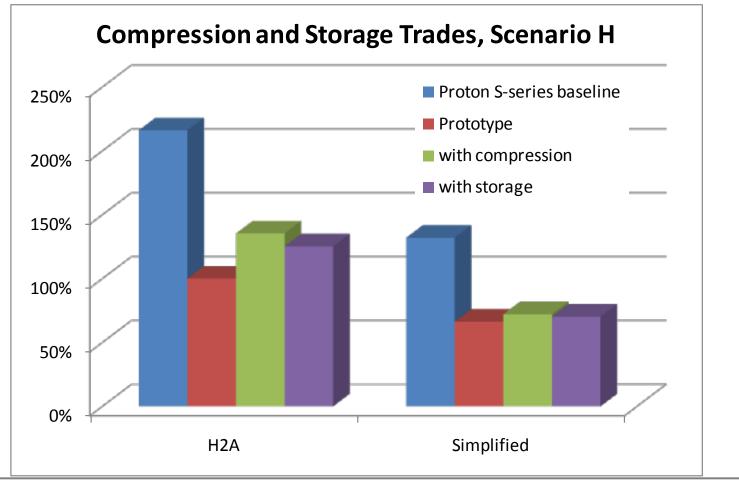
Technical Accomplishments Task 1.0: Technical Requirements Task 1.4: Product Requirements Definition

2-48-48 (Procession)	And Annual Contract of the Art (1997)
A DECEMBER	100 000 10 The best 101 10 11 10 11
- TVAzerae	
	P + + + + + + + + + + + + + + + + + + +
and a market	

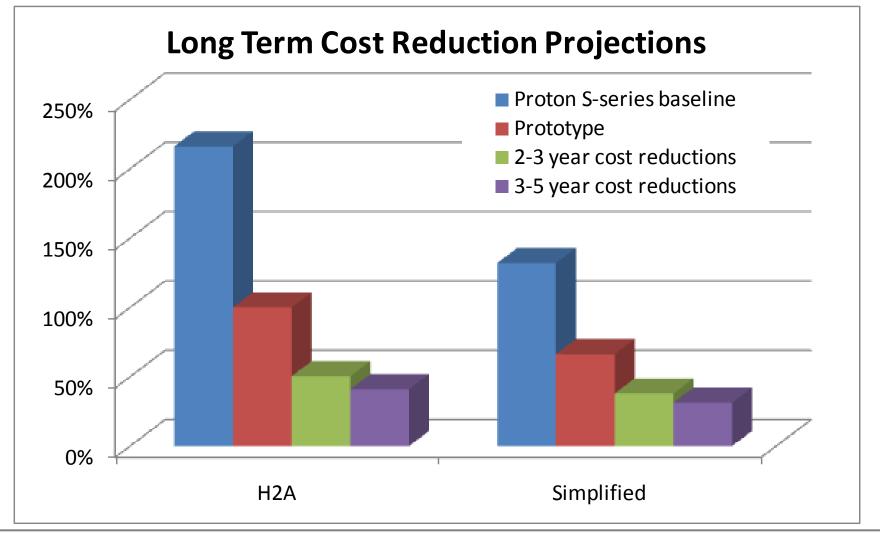
2.4400 (**********************************	ingen han soll Of Film range	iner George	1.000	e inte	3
	1				ł
1 10/25			Ē	ł	1
1 Parameter	- and				ł
A Distances		56	e		+
Continues.		ł		ř	ł
1.50	1	ului		ł	4
il mile	- 34	ĉ			ŧ


Colors and

Technical Accomplishments Task 2.0: Cost Analysis


• Task 2.1: Effect of driving scenarios

Technical Accomplishments Task 2.0: Cost Analysis


 Task 2.1: Effect of ground storage and mechanical compression

Technical Accomplishments Task 2.0: Cost Analysis

• Task 2.2: Effect of Cost Reductions

Technical Accomplishments Task 3.0: Installation Analysis

- Task 3.1: Current Codes and Standards Environment
 - NFPA 70 National Electric Code
 - NFPA 79 Electrical Standard for Industrial Machinery
 - NFPA 69 Standard on Explosion Prevention Systems
 - IEC/UL 61010-1 Safety Requirements for Electrical Equipment for Measurement, Control, and Laboratory Use
 - Municipality specific codes vary by location

Technical Accomplishments Task 3.0: Installation Analysis

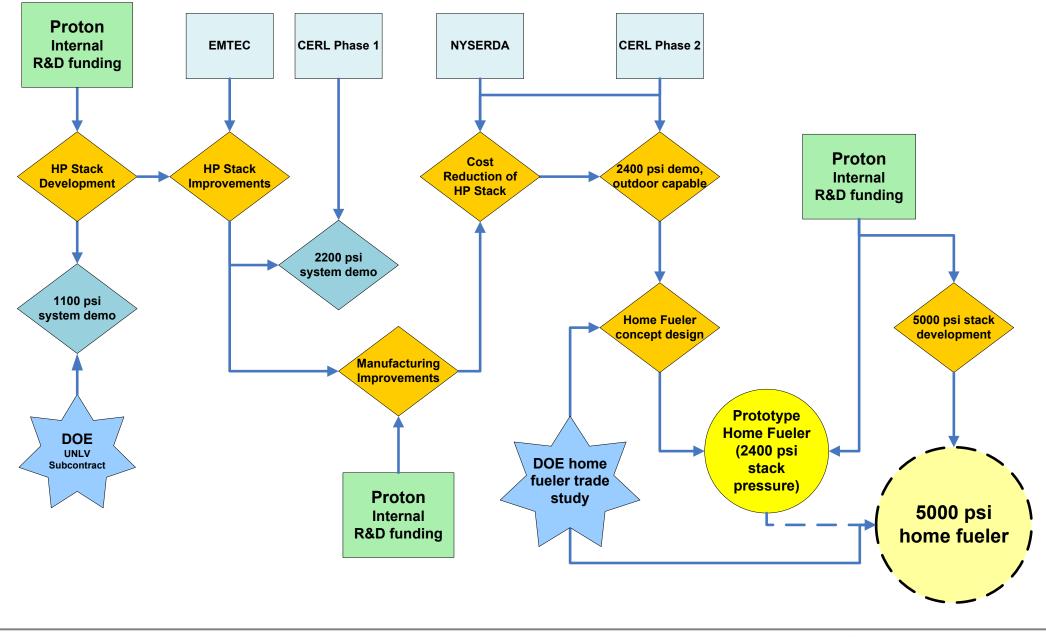
- Task 3.1: Desirable Codes and Standards Environment
 - ISO/IS 22734-1 (Commercial/Industrial)
 - ISO/DIS 22734-2 (Residential)
 - Education campaign to make local AHJ's familiar with the ISO standards and hydrogen equipment

Technical Accomplishments Task 3.0: Installation Analysis

- Task 3.2: Operation and Maintenance
 - Service plan:
 - Home-owner access to:
 - Air Inlet Filter
 - Water De-Ionizing Cartridges
 - Annual maintenance required for additional items
 - Locked cabinet accessible only to qualified service technicians
 - Service centers to stock replacement parts and dispatch technicians

Collaboration

- Technical sources
 - Hydro-Pac
 - W.E.H.
 - GTI



Future Work

- Fabricate prototype based on existing commercial components
- Develop key electrolysis system components to achieve cost, manufacturability, and serviceability requirements
- Extend electrolysis pressure range
- Transition full pressure, cost-reduced, residential fueling product to commercial readiness

Future Work: Home Fueler Roadmap

Summary

• Relevance:

 Home fueling is a viable pathway on the continuum of options. Home fueling grows organically with vehicle introduction. PEM electrolysis is ideal technology for small footprint, easy maintenance.

• Approach:

 Examine key technical, cost, and installation requirements through sound analytical approach. Draw upon *Proton's experience with commercial products* to inform the design, cost estimates, and technical service plans.

• Technical Accomplishments:

 Developed model for electrolysis capacity based on real-world driving data. Examined effects of different driving scenarios on capacity, size, service rating and cost. Described the codes and standards environment

• Collaborations:

Drew upon relevant data from prior work and key component suppliers.

Proposed Future Work:

- Prototyping, component development, product development

