

U.S. Army Research, Development and Engineering Command

U.S. ARMY Power & Energy from an Army Ground Vehicle Perspective

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Dr. Peter Schihl

2010 Department of Energy Annual Merit Review 8 June 2010

- Army Ground Vehicles Introduction
- War Fighter Outcomes and Power/Energy Needs
- Army Ground Vehicle Challenges
- Engine Emissions Policy
- Networked Energy Concept
- Future Directions

Army Ground Vehicles *RDECOM*

- 300,000 + tactical and combat vehicles (150 1500 BHP)
- 240,000 + trucks class 2 thru class 8 + (150 500 BHP)
- 40,000 + 2-stroke powered vehicles (200 500 BHP)

MRAP - Mine Resistant Ambush Protected

U.S. ARMY

PLS – Palletized Loading System

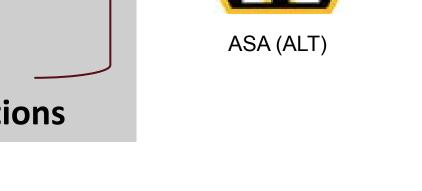
HEMTT – Heavy Expanded Mobility Tactical Truck

*FVPDS (Jan. 2000) Fielded Vehicle Performance Data Systems

Army Ground Vehicles

COMBAT VEHICLES

- M1 Abrams (AGT-1500)
- M109/M110 Self Propelled Howitzer (8V71T)
- M2/M3 Bradley (VTA-903)
- M88 Medium Recovery Vehicle (TCM-1790)
- M578 Light Armored Recovery Vehicle (LRC) – (8V71T)
- M60 family (TCM-1790)
- Chaparral Missile Launcher (6V53T)
- FAASV Fast Assault Ammunition Supply Vehicle (8V71T)
- M551 Sheridan Assault Vehicle (6V53T)
- Stryker (3126/C7)

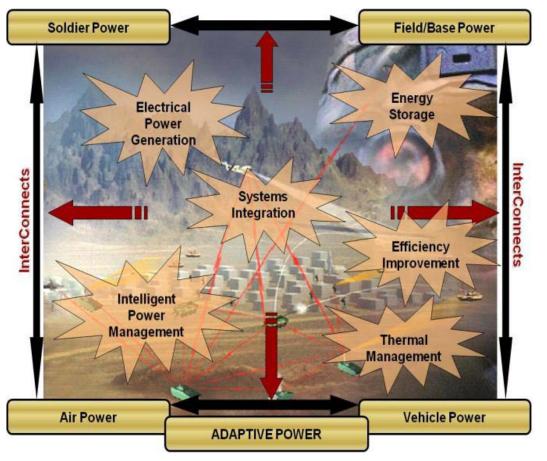

TACTICAL VEHICLES

U.S. ARMY

RDEGOI

- HET Heavy Equipment Transporter (8V92TA)
- HEMTT Heavy Expanded Mobility Tactical Truck (8V92TA)
- PLS Palletized Loading System (8V92TA)
- 2.5 Ton Truck (LD-465/LDT-465)
- M939 5 Ton Truck (NHC 250/6CTA8.3)
- M915/M916 Line Hauler (NTC400/S-60)
- M917, M918, M919 Tractor (NTC 400)
- HMMWV (GM 6.2/6.5 IDI)
- CUCV Commercial Utility Cargo Vehicle (GM 6.2/6.5 IDI)
- Family of Medium Tactical Vehicles (C7)

LEGEND: black: four-stroke diesel red: two-stroke diesel blue: gas turbine



10 Comprehensive Warfighter Outcomes

- Battle Command Network
- Counter IED and Mine
- Power and Energy
- Human Dimension
- Training
- Force Protection
- Battlespace Awareness
- Force Application
- Logistics
- Unmanned Systems Operations

Power and Energy Warfighter Outcome

 Provide enhanced ability to operate worldwide by reducing by half, the weight and volume of fuel associated with powering the force.

U.S. ARMY

RDECON

 Combat platforms require up to 30 MJ of pulsed power for lethality and 20 percent increase in continuous power to enable superior tactical mobility, speed and an excess capacity for on/off board electrical power use while increasing fuel economy by 40 percent.

Emerging electrical components

and systems require dismounted Soldiers to possess a fourfold increase of available power, above current 12.3 Watts-Hr, at half the tactical weight.

Fuel Economy Economic Driver RDECON

WARFIGHTER FOCUSED.

\$10 per barrel increase in oil increases DoD costs by ~\$1.3B per year

Kuwait/OIF/OEF Fuel to FOB (Million gallons/yr)	431
Fuel trucks needed	140,075
Convoys needed	9,332
Soldiers per convoy trip (Fuel trucks, protection, other support)	120
Soldier trips	644,360
Fewer Soldier trips (Resulting from 1% Fuel Savings)	6,444

U.S. ARMY

RDECON

On Board Electrical Power

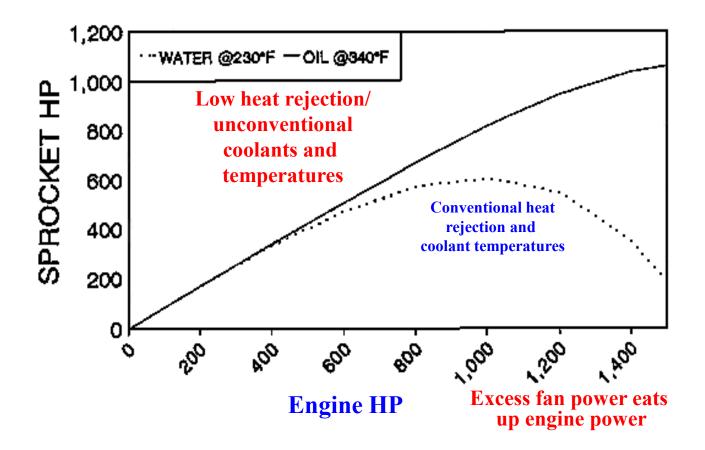
- Growing need for countermeasures, protection, sensors, ad hoc HVAC, etc.
- Silent watch need; minimal noise
 - In-line starter generators
 - Auxiliary power units
 - Hybrid propulsion architecture
 - Fuel cells
 - o Batteries
- Can't impede mobility
 - Dash speed, top speed on grade, high tractive effort to weight cooling
- One solution does not fit all vehicle applications

Army Ground Vehicle Propulsion Challenges

1.Cooling2.Cooling3.Cooling4.Fuel Effects5.Filtration

The Army vehicle cooling point is high tractive effort to weight under desert-like operating conditions (ex. 5 ton wheeled vehicle ~0.6 while 15 ton tracked vehicle ~0.7 both at 120 F ambient)

High Power Density Propulsion Systems – Combat Vehicles

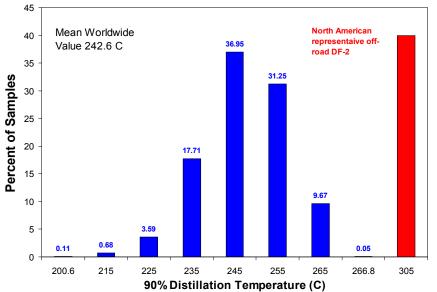

- Army definition of Propulsion System Power Density (PD):
 - PD = sprocket (wheel) power / total propulsion system volume [bhp/ft³]
 - Air filtration requirements, thermal management system, transmission, engine (fuel), ducting requirements

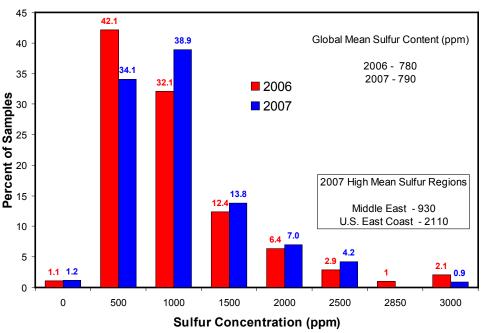
Ex. Bradley FIV: PD = 3 FCS MGV target: PD = 6 Research target: PD > 8-10

Propulsion System Power Density – Combat Vehicle

Sprocket Hp vs Engine Hp Ambient Air 120°F

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

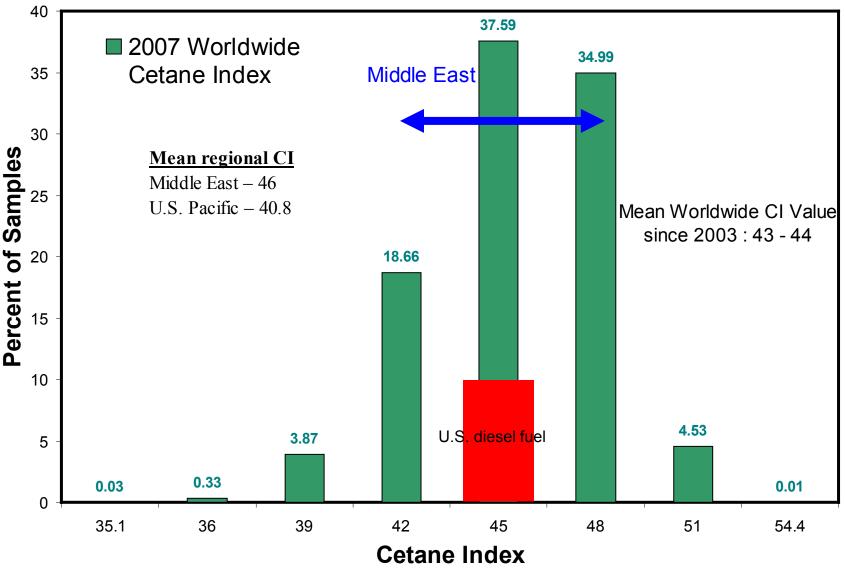

U.S. ARMY


RDECOM

JP-8 Property Specifications

Sulfur content: max. 3000 ppm

- Aromatics: max. 25%
- Specific gravity: 0.775 0.84
- Evaporation Characteristics:
 - 10% recov.: max. 205 C
 - End point: max. 300 C
- Net Heating Value: min. 42.8 MJ/kg
- Cetane Index: none



U.S. ARMY

RDECON

JP-8 Cetane Index Worldwide Trend in 2007

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

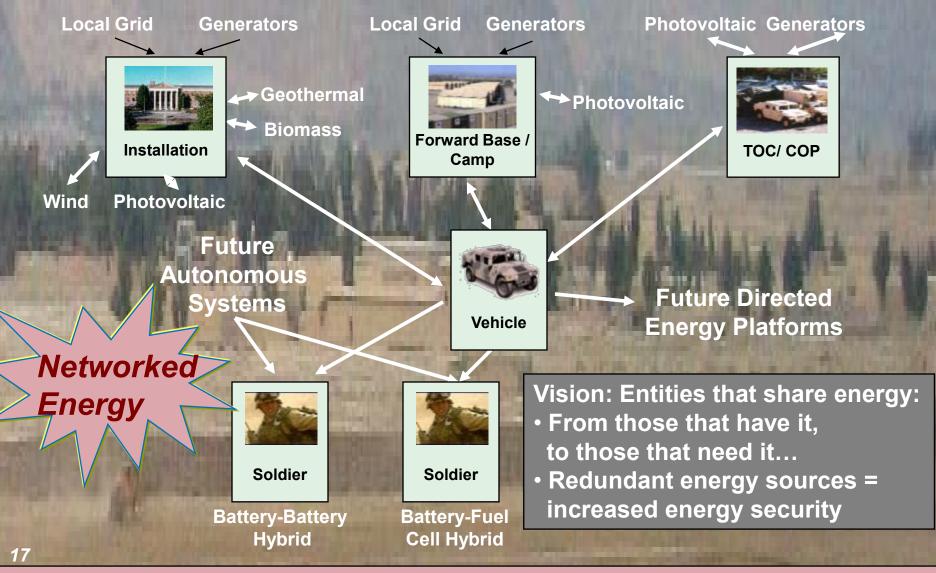
U.S. ARMY

RDECOL

Engine Emissions Policy Becom

- The Army can not buy 2007 or Tier IV (> 75 bhp) compliant COTS engines and directly integrate into current and new heavy-duty vehicles.
- Combat vehicle: permanent armor/attached weapon system – National Security Exemption (NSE) via 40 CFR, 89.908
- 'Tactical Vehicles'
 - ✓ Without ARMOR NSE from 2004 and 2007 standards (i.e. meet 1998) and Tier IV
 - With ARMOR NSE from ALL standards

Engine Emissions Solution^{us AMY} Pathways


- Near term
 - Modified on-road COTS minus cooled EGR and exhaust aftertreatment
 - TIER II or TIER III engines
- Mid term
 - Modified on-road COTS and TIER IV minus cooled EGR and exhaust aftertreatment
 - Tier II or TIER III engines
- Long term
 - unknown

Concept for Networked Energy

Improving energy capability through holistic power sharing - you're in the fight...!

Ground Vehicle Power and Energy Future Directions

U.S. ARMY RDECOM

- Advanced Propulsion System
 - Low heat rejection and high power to weight ratio engines; propulsion materials
 - Heavy-fuel flexible and more efficient engines
 - More efficient transmissions
 - Longitudinal and cross-drive; wider ratio
 - Hybrid propulsion for mission specific applications
 - Energy Recovery Systems
- On-Board Electrical Power
 - In-line starter generators, auxiliary power units, fuel cells
 - High energy and power density batteries

THANK YOU!

BACK UPS

Power and Energy Strategy for Future Directions

RDECOM Strategic Directions in Power and Energy

Higher Energy Power Sources for Soldiers and Sensors

Unmanned Air and Ground Platforms

Intelligent Energy Management with Alternative Energy Sources

Ground Platforms Auxiliary Power and Quiet Watch Capabilities

High Energy Weapons

DDR&E Energy and Power Areas of Opportunity

U.S. ARMY

RDECON

Tactical Energy Independence

Autonomous Platform Power

Grid Power Distribution & Control

Platform Efficiency & Environmental Impact

Electric Weapons & High Power Sensors

Strategy for Future Directions

Higher Energy Power Sources for Soldiers and Sensors

Reformed Methanol Hybrid Fuel Cell

Rucksack Portable Power System

Intelligent Energy Management Coupled with Alternative Energy Sources for Reduced Logistical Burden (Combat Outposts)

> Ground Combat & Tactical Vehicles Vehicle Auxiliary Power and Quiet Watch Capabilities

> > **High Energy Weapons**

Power & Energy Technology Gaps

C4ISR & Soldier

High Density Storage for Soldiers and Platforms

Logistic Fuel Conversion for Auxiliary Power Sources

Efficient, High Density Alternative Energy Capture and Conversion

Ground

Power Sources and Conversion for Small Autonomous Systems

On Board Power-Higher Density, Higher Power Mechanical To Electrical Conversion

Intelligent, Scalable Power Management & Distribution

Integrated Power Management on Platforms

Air & Effects

Reliable Extended Shelf Life Power Sources for Munitions

High Temperature Power Electronics for Platforms