

Fuel Cell Technologies Program Overview

Richard Farmer Acting Program Manager

2010 Annual Merit Review and Peer Evaluation Meeting (7 June 2010)

The Administration's Clean Energy Goals

- ✓ Double Renewable
 Energy Capacity by
 2012
- Invest \$150 billion over ten years in energy R&D to transition to a clean energy economy
- ✓ Reduce GHG emissions 83% by 2050

Fuel Cells Address Our Key Energy Challenges

Increasing Energy Efficiency and Resource Diversity

 \rightarrow Fuel cells offer a highly efficient way to use diverse fuels and energy sources.

Reducing Greenhouse Gas Emissions and Air Pollution:

→ Fuel cells can be powered by emissions-free fuels that are produced from clean, domestic resources.

a) a:(c

State of the Industry: Where are we today?

U.S. DEPARTMENT OF

Fuel Cells for Stationary Power, Auxiliary Power, and Specialty Vehicles

The largest markets for fuel cells today are in stationary power, portable power, auxiliary power units, and forklifts.

~75,000 fuel cells shipped worldwide

~24,000 fuel cells shipped in 2009 (> 40% increase over 2008)

Fuel cells can be a cost-competitive option for critical-load facilities, backup power, and forklifts.

Production & Delivery of Hydrogen

In the U.S., there is currently:

- ~9 million metric tons of H₂ produced annually
- >1,200 miles of pipelines

Fuel Cells for Transportation

In the U.S., there are currently:

- > 150 fuel cell vehicles
- ~ 15 active fuel cell buses
- > 50 fueling stations

Sept. 2009: Auto manufacturers from around the world signed a letter of understanding supporting fuel cell vehicles in anticipation of widespread commercialization, beginning in 2015.

State of the Industry: Growing Markets and Capacity

U.S. DEPARTMENT OF

The hydrogen and fuel cell industry is growing steadily, serving key near-term markets.

Key Challenges

The Program has been addressing the key challenges facing the widespread commercialization of fuel cells.

Fuel Cell Cost & Durability

Targets*:

Stationary Systems: \$750 per kW, 40,000-hr durability

Vehicles: \$30 per kW, 5,000-hr durability

Hydrogen Cost

Proposed target*: ~ \$6 / gge (dispensed and untaxed)

Hydrogen Storage Capacity

Target: > 300-mile range for vehicles without compromising interior space or performance

Technology Validation:

Technologies must be demonstrated under real-world conditions.

Market Transformation

Assisting the growth of early markets will help to overcome many barriers, including achieving significant cost reductions through economies of scale.

echnolog Barriers*

Safety, Codes & Standards Development

Domestic Manufacturing & Supplier Base

Public Awareness & Acceptance

Hydrogen Supply & Delivery Infrastructure

Funding History for Fuel Cells

U.S. DEPARTMENT OF

DOE Funding for Hydrogen & Fuel Cells

* Funding in the Office of Fossil Energy includes the SECA Program and activities in H₂ Production from Coal

** Funding in the Office of Science includes activities in the offices of Basic Energy Sciences and Biological and Environmental Research

Funding for Fuel Cells and Hydrogen DOE FY11 Budget Request

U.S. DEPARTMENT OF

** NE FY11 Request TBD (FY10 funding was \$5M)

Proposed Hydrogen Cost Target Revision Reasons

U.S. DEPARTMENT OF

Previous target was set in 2005 with a target of $2-3 / kg-H_2$ (dispensed) by 2015. The new cost target accounts for adv. technologies & new EIA gasoline price projections

Reasons for Cost Target Update

- The current target is \$2 - \$3 / kg H₂ (dispensed, untaxed) by 2015
- The gasoline cost and reference vehicle have changed from original cost target derivation
 - EIA projections of gasoline price increased from \$1.29/gal in 2015 to \$4.57/gal (2007\$) in 2020
- New baseline technology instead of gasoline ICEs
 - FCEVs will be compared to HEVs and PHEV-10

	Current Case	Proposed Case
Reference Yr.	2015	2020
EIA AEO source yr./ case	2005 / Hi Oil Case	2009 / Hi Oil Case
Comparative vehicles	Gasoline ICE/HEV	Gasoline HEV/PHEV 10
Gasoline Cost (untaxed), \$/gal.	\$1.29/gal	\$4.57/gal
Reference year dollars	2005	2007
H ₂ FCEV to ICE fuel economy ratio	2.40	Not used
H ₂ FCEV to gasoline HEV fuel economy ratio	1.67	1.41
H ₂ FCEV to PHEV 10 fuel economy ratio	Not applicable	Simple ratio not applicable
H ₂ cost target, \$/gge	\$2.00 - \$3.00 / gge	~ \$6.00 / gge

DRAI

Proposed Hydrogen Cost Target Revision Sensitivities to HEV & PHEV10 Parameters

 The cost necessary for hydrogen to be competitive depends upon the gasoline price, electricity price, vehicle fuel economies, and utility of CD mode.

\$5.00 / gal gasoline (untaxed) is approximately 10% higher than the AEO 2009 High Energy Price case \$3.00 / gal gasoline (untaxed) is the AEO 2009 Reference (including effects of ARRA) case estimate rounded down.

The HEV fuel economy sensitivity was set at the base +/-10%

The FCV fuel economy sensitivity was set at the base +/-20%

Electricity price range includes low and high residential electricity rates in the contiguous United States.

Time in CD mode depends upon vehicle's individual miles traveled between charges.

Proposed Hydrogen Cost Target Revision Status vs. Targets

U.S. DEPARTMENT OF

Revising the hydrogen cost target will result in an assessment of Hydrogen Production and Delivery R&D priorities. Projections of high-volume / nth plant production and delivery of hydrogen meet the targets for most technologies.

Projected High-Volume Cost of Hydrogen (Dispensed) — Status (\$/gallon gasoline equivalent [gge], untaxed)

NEAR TERM: Distributed Production

 \mathbf{A} \mathbf{H}_2 from Natural Gas

- H_2 from Ethanol Reforming
- H_2 from Electrolysis

LONGER TERM: Centralized Production

- Biomass Gasification
- Central Wind Electrolysis
- Coal Gasification with Sequestration
- Solar Thermochemical Cycle

Will re-baseline data points to the 2009 AEO Hi Oil Case for 2020

DR4

Fuel Cell R&D 2010 Progress & Accomplishments

We've reduced the cost of fuel cells to \$61/kW*

- More than 35% reduction in the last two years
- More than 75% reduction since 2002
- 2008 cost projection was validated by independent panel**
- As stack costs are reduced, balance-of-plant components are responsible for a larger % of costs.

*Based on projection to high-volume manufacturing (500,000 units/year).

In 2008, an Independent Panel found \$60 - \$80/kW to be a "valid estimate": http://hydrogendoedev.nrel.gov/peer_reviews.html

Fuel Cell R&D 2010 Progress & Accomplishments

Progress has been made in many components and systems

Advances in SOFC Technology

- Acumentrics demonstrated 24% increase in SOFC power density, enabling 33% reduction in stack volume and 15% reduction in stack weight
 - Low degradation rate of 0.86% / 1000 hours during 1500 hours of testing

Advances in Non-PGM Catalysts

 Non-PGM catalysts by LANL improved fuel cell performance by more than 100x since 2008, exceeding DOE 2010 target of 130 A / cm³ at 0.80 V

Hydrogen Production R&D 2010 Progress & Accomplishments

The key objective is to reduce cost of H₂ (delivered, dispensed & untaxed)

Electrolysis

> 20% reduction cost of electrolyzer cell via a 55% reduction in catalyst loading from new process techniques (Proton Energy)

<u>Algae</u>

Continuous fermentative / photobiological H₂ production from potato waste achieved a maximum molar yield of 5.6 H₂ / glucose (NREL)

H₂ Delivery R&D 2010 Progress & Accomplishments

RECENT ACCOMPLISHMENTS

- Testing demonstrated Cryopump flow rates up to 2 kg / min exceeding targets (BMW, Linde, LLNL)
- Provides lowest cost compression option for a station and meets the challenges of sequential vehicle refueling
- Demonstrated manufacturability and scalability of glass fiber wrapped tanks through sequential prototypes (3 to 24 to 144 inches in length) (LLNL)
- Completed design criteria and specifications for centrifugal compression of hydrogen which are projected to meet or exceed DOE targets. Compressor designed using off-the-shelf parts is in testing (Concepts NREC)

H₂ Storage 2010 Progress & Accomplishments

In just *five years* of accelerated investment, DOE has made significant progress in near- and long-term approaches.

RECENT ACCOMPLISHMENTS

- Centers of Excellence
 - Developed "one-pot" hydrazine method to regenerate spent material from ammoniaborane (H₃NBH₃) dehydrogenation (CHSCoE)
 - Demonstrated 2 methods to rehydrogenate alane (AIH₃) under mild conditions (MHCoE)
 - Confirmed experimentally that boron-doped carbon has increased hydrogen binding energies (HSCoE)
- Systems Analysis
 - Finalized performance and cost projections for 350 & 700 bar compressed storage
 - Completed preliminary analysis of MOF-177 sorbent-based material system
 - Completed preliminary analysis of a cryocompressed system with potential to meet 2015 targets

Gravimetric and volumetric capacities continue to show year-to-year improvements

RECENT ACCOMPLISHMENTS

- Developed process model for controlling GDL coating conditions (Ballard)
 - Significant improvement in quality yields and GDL cost reduction estimated at 53% to-date
- Manufacturing of Low-Cost, Durable MEAs Engineered for Rapid Conditioning (Gore)
 - Cost model results indicate that a new three layer MEA process has potential to reduce MEA cost by 25%
- Adaptive process controls and ultrasonics for high temp PEM MEA manufacturing allows for more than 95% energy savings during the sealing process (RPI)
- Developed an innovative online X-ray fluorescence for high-speed, low-cost fabrication of gas diffusion electrodes (BASF)

anaka

This is the first time a scanning XRF has been used on GDEs – BASF

Technology Validation 2010 Vehicles Progress & Accomplishments

ENERGY

Demonstrations are essential for validating the performance of technologies in integrated systems, under real-world conditions.

RECENT ACCOMPLISHMENTS

Vehicles & Infrastructure

- Fuel cell durability
 - 2,500 hours projected (nearly 75K miles)
- Over 2.5 million miles traveled
- Over 106 thousand total vehicle hours driven
- Fuel cell efficiency 53-59%
- Vehicle Range: ~196 254 miles
- Over 150,000 kg- H₂ produced or dispensed^{*}
- 144 fuel cell vehicles and 23 hydrogen fueling stations have reported data to the project

Buses

- DOE is evaluating real-world bus fleet data (DOT collaboration)
 - H₂ fuel cell buses have a range of 39% to 141% better fuel economy when compared to diesel & CNG buses

Forklifts

• Forklifts at Defense Logistics Agency site have completed more than 10,000 refuelings

Recovery Act

• NREL is collecting operating data from deployments for an industry-wide report

Education and Safety, Codes, & Standards 2010 Progress & Accomplishments

Safety & Code Officials

 Trained >90 first responders in 3 advanced-level first responder training courses in 18 states and deployed an Intro to Hydrogen web course for code officials

Schools & Universities

 Working with 5 universities to finalize & teach >25 university courses & curriculum modules specializing in H₂ and fuel cells

End Users

 Provided day-long educational seminars to lift truck users, including hands-on forklift demos and real-world deployment data

State & Local Governments

 Conducted >19 workshops and seminars across the country to educate decision-makers on fuel cell deployments

CNG H₂ Fuels Workshop

 Brazil, Canada, China, India and U.S. identified critical gaps and lessons learned from CNG vehicles

• H₂ Fuel Quality Specification

 Technical Specification published and harmonized with SAE J2719

Separation Distances

 Incorporated Quantitative Risk Assessment for separation distances into codes (NFPA2)

Materials & Components Compatibility

- Completed testing to enable deployment of 100 MPa stationary storage tanks
- Forklift tank lifecycle testing program underway to support the development of CSA HPIT1

The Program is facilitating the adoption of fuel cells across

government and industry.

RECENT DEPLOYMENTS

Warner-Robins, GA -20 forkliftsNew Cumberland, PA -40 forkliftsFort Louis, WA -19 forkliftsLos Alamitos, CA -PAFC 200

20 forklifts 40 forklifts 19 forklifts PAFC 200kW Prime Power Fuel Cell 1 Ford H₂ ICE Bus

NREL -

UPCOMING PROJECTS

Hawaii Installation

PEM electrolyzer produces $65kg-H_2$ / day from Geothermal-Wind power to fuel two H₂ buses

South Carolina Landfill Gas

Landfill gas reformation generates H₂ that powers onsite material handling equipment

Ford H₂ ICE Bus Deployments

Six to go to DOD / DLA sites & five to National Labs

CERL Backup Power

More than 250 kW of emergency backup fuel cell power at 14 federal facilities across the DOD, DOE, NASA, GSA, and the National Park Service

Recovery Act Funding for Fuel Cells

DOE announced ~\$42 million from the American Recovery and Reinvestment Act to fund 12 projects, which will deploy up to 1,000 fuel cells — to help achieve near term impact and create jobs in fuel cell manufacturing, installation, maintenance & support service sectors.

Approximately \$51 million in cost-share funding from industry participants—for a total of about \$93 million.

COMPANY	AWARD	APPLICATION
Delphi Automotive	\$2.4 M	Auxiliary Power
FedEx Freight East	\$1.3 M	Specialty Vehicle
GENCO	\$6.1 M	Specialty Vehicle
Jadoo Power	\$2.2 M	Backup Power
MTI MicroFuel Cells	\$3.0 M	Portable
Nuvera Fuel Cells	\$1.1 M	Specialty Vehicle
Plug Power, Inc. (1)	\$3.4 M	СНР
Plug Power, Inc. (2)	\$2.7 M	Backup Power
Univ. of N. Florida	\$2.5 M	Portable
ReliOn Inc.	\$8.5 M	Backup Power
Sprint Comm.	\$7.3 M	Backup Power
Sysco of Houston	\$1.2 M	Specialty Vehicle

Recovery Act Fuel Cell Estimated Deployments

ENERC

We are assessing the costs and benefits of various technology pathways and identifying key technological gaps, by conducting:

Life-cycle analysis, Emissions analysis, Environmental analysis, Systems integration analysis

Assessing Novel Pathways for H₂ Production

(e.g. cost of combined hydrogen, heat and power)

In cases where there is a low demand for hydrogen in early years of fuel cell vehicle deployment, CHHP may have cost advantages over on-site SMR production.

* For details, see full report at: http://www.cafcp.org/hydrogen-fuel-cell-vehicle-and-station-deployment-plan

NREL convened independent experts to provide rigorous, unbiased analyses for the technology status, expected costs and benefits, and effectiveness of the Program.

2009 Independent Assessment of Electrolysis Cost

- Delivered H₂ costs:
 - ~\$4.90 \$5.70/gge from distributed electrolysis
 - ~\$2.70 \$3.50/gge from centralized electrolysis
- Electrolysis conversion efficiency is 67% (just below the DOE 2014 target of 69%)
- Distributed electrolyzer capital cost is expected to fall to \$380/kW by 2015 (vs. DOE target of \$400/kW)
- Centralized electrolyzer capital cost is expected to fall to \$460/kW by 2015 (vs. DOE target of \$350/kW)

2010 Independent Assessment of Stationary Fuel Cell Status & Targets

- Confident that by 2015, LT-PEM & HT-PEM can achieve 40,000h
- 45% electrical efficiency for 1-10kW systems is feasible for HT-PEM, LT-PEM depends on improved catalysts & higher operating temps
- SOFC systems are likely to achieve DOE targets for electrical and CHP efficiencies.
 90% CHP efficiency is likely to be attainable by SOFC systems
- Confident that by 2020, LT-PEM & HT-PEM can achieve \$450-\$750/kW, while SOFC can achieve \$1000-2000/kW

Independent Review of Hydrogen Production Cost Estimate Using Biomass Gasification Expected in Late 2010

National Research Council of the National Academies

3rd Review of the FreedomCAR and Fuel Partnership

Assessing the Program Commercializing Technologies

<u>Close to 30</u> hydrogen and fuel cell technologies developed by the Program entered the market.

143 PATENTS resulting from EERE-funded R&D:

- 73 fuel cell
- 49 H₂ production
 and delivery
- 21 H₂ storage

50% are actively used in:

- 1) Commercial products
- 2) Emerging technologies
- 3) Research

Completed Fuel Cell Market Report provides an overview of market trends and profiles for select fuel cell companies

Source: Pacific Northwest National Laboratory http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/pathways_success_hfcit.pdf

Federal Interagency Coordination

U.S. DEPARTMENT OF

U.S. PARTNERSHIPS

- FreedomCAR & Fuel Partnership: Ford, GM, Chrysler, BP, Chevron, ConocoPhillips, ExxonMobil, Shell, Southern California Edison, DTE Energy
- **Hydrogen Utility Group:** Xcel Energy, Sempra, DTE, Entergy, New York Power Authority, Sacramento Municipal Utility District, Nebraska Public Power Authority, Southern Cal Edison, Arizona Public Service Company, Southern Company, Connexus Energy, etc.
- **State/Local Governments:** California Fuel Cell Partnership, California Stationary Fuel Cell Collaborative, co-coordinators of Bi-Monthly Informational Call Series for State and Regional Initiatives with the National Hydrogen Association and the Clean Energy Alliance
- Industry Associations: US Fuel Cell Council, National Hydrogen Association
- Federal Interagency Partnerships: Hydrogen and Fuel Cell Interagency Task Force and Working Group, Interagency Working Group on Manufacturing, Community of Interest on Hydrogen and Fuel Cell Manufacturing

INTERNATIONAL PARTNERSHIPS

International Partnership for Hydrogen and Fuel Cells in the Economy— A partnership among 16 countries and the European Commission

International Energy Agency — Implementing Agreements

- Hydrogen Implementing Agreement 21 countries and the European Commission
- Advanced Fuel Cells Implementing Agreement 19 countries

For More Information ...

Hydrogen Posture Plan

An Integrated Research, Development and Demonstration Plan

Fuel Cell Program Plan

Outlines a plan for fuel cell activities in the Department of Energy

- → Replacement for current Hydrogen Posture Plan
- \rightarrow To be released in 2010

Annual Merit Review Proceedings

Includes downloadable versions of all presentations at the Annual Merit Review

 \rightarrow Latest edition released June 2009

www.hydrogen.energy.gov/annual_review09_proceedings.html

Annual Merit Review & Peer Evaluation Report

Summarizes the comments of the Peer Review Panel at the Annual Merit Review and Peer Evaluation Meeting

→ Latest edition released October 2009

www.hydrogen.energy.gov/annual_review08_report.html

Annual Progress Report

DOE Hydrogen Program

ENERGY

ENERGY

Summarizes activities & accomplishments within the Program over the preceding year, with reports on individual projects → Latest edition published November 2009

www.hydrogen.energy.gov/annual_progress.html

Next Annual Review: May 7 – 13, 2011 Washington, D.C.

http://annualmeritreview.energy.gov/

Thank you

Additional Information

ARRA established the advanced energy manufacturing tax credit to encourage the development of a US-based renewable energy manufacturing sector.

- ARRA authorizes the Department of the Treasury to issue \$2.3 billion of credits under the program.
- The investment tax credit is equal to 30 percent of the qualified investment that establishes, re-equips, or expands a manufacturing facility.

The specified review criteria included:

- Greatest domestic job creation (direct and indirect)
- Greatest net impact in avoiding or reducing air pollutants or emissions of greenhouse gases; lowest levelized cost of energy
- Greatest potential for technological innovation and commercial deployment
- Shortest project time from certification to completion

Results

- 160 applications out of over 500 were selected
- 2 fuel cell manufacturers were selected (very few fuels cell applications were submitted)
- New legislation being proposed to extend the program adding an additional \$5 billion in new tax credits

ENER

NREL has collected data for DOE and FTA on 8 FCBs in service at 4 sites:

AC Transit SunLine CTTRANSIT VTA

Traveled:

~ 368,000 miles

Dispensed:

72,931 kg H₂

NREL Hydrogen Bus Evaluations for DOE and FTA																				
Site/Location	State	Eval.	1	20	09	4	1	20	010	4	1	20	011	4	1	20)12 3	4		
AC Transit/ SF Bay Area	CA		•	-	CA ZEB Advanced Demo															
SunLine/ Thousand Palms	CA	nologi	FC	СВ																
SunLine/ Thousand Palms	CA	echi idati	echi idati							Adv	anc	ed I	ГСВ	Pro	oject					
CTTRANSIT/ Hartford	СТ)Е Т Val	F	СВ	Dem	10														
City of Burbank/ Burbank	CA	DC						Bu	irbai	nk F	СВ									
AC Transit/ Oakland	CA	IS		Aco	cel.7	Fest														
SunLine/ Thousand Palms	CA	ll Bu										American FCB Demo								
CTTRANSIT/ Hartford	СТ	Ce					N	Nutmeg Hybrid FCB Demo												
USC, CMRTA/ Columbia UT/ Austin	SC, TX	Fuel	Fuel						Hybrid FCB											
Logan Airport / Boston	MA	Prog		MA H2								12 F	FCB Demo							
Albany / NY	NY	rA Natio							Lig	ght-	wt F	СВ								
TBD / NY	NY											NYP	PA H	2 P	owe	red	FCE	3		
SFMTA / San Francisco	CA	Ľ.						FC	C AP	U H	ybrio	d								
Demonstration site National Fuel Ce Progr	ell Beram	us	2	N S	lorthe	ern Ca ern C	alifor alifoi	nia mia		Ne ^r	w En w Yo	glanc rk	ł		South South	neast	t			

Fuel economy results: 39% to 141% better than diesel and CNG buses

www.nrel.gov/hydrogen/proj_tech_validation.html

Estimate of data collection/evaluation - schedule subject to change based on progress of each project

U.S. Department of Energy

Proposed Hydrogen Cost Target Revision Methodology

The fuel cost per mile for a hydrogen vehicle is set equivalent to the cost of competing vehicles using the following methodology

H₂ FCV to Gasoline HEV:

H₂ FCV to Gasoline PHEV 10:

Technologies compared on a \$ / mile basis

33

Proposed Hydrogen Cost Target Revision Fuel Costs of Competing Technologies

New Hydrogen Cost Target is recommended to be ~\$6.00/gge or \$0.10/mile (untaxed, \$2007)

Hydrogen costs that are equivalent to competitive technologies were calculated by multiplying competing technologies' fuel cost per mile by the hydrogen FCEV's projected fuel economy (59 mile / gge)

AEO 2009 High Energy Price projections for 2020 were used for this analysis. Gasoline is \$5.04/gal with U.S. average gasoline fuel taxes - \$4.57 without. The projected residential electricity rate is \$0.1152 / kWh. (both in 2007\$). Fuel economies were provided by VTP based on PSAT model runs (details in appendix).

