Hydrogen Fuel Quality

Focus: Hydrogen Fuel Quality Results and Determining ISO levels

E. Brosha, A. Fernandez, F. Garzon, C. Padró, and T. Rockward (presenter) Los Alamos National Laboratory June 9, 2010

Project ID # SCS007

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: 10/1/06
- Project end date: 9/30/11
- Percent complete: 70 %

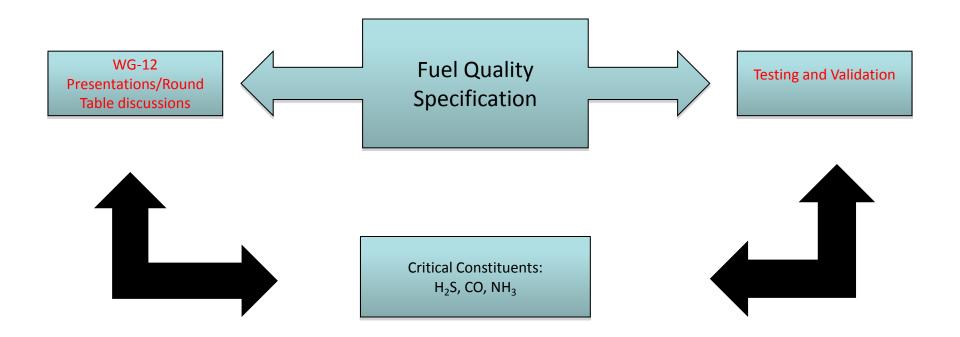
Barriers

- Barriers addressed
 - I. Conflicts between Domestic and International Standards
 - N. Insufficient Technical Data to Revise Standards

Budget

- Total project funding: \$1,950K
 - DOE share: 100%
 - Contractor share: 0%
- Funding received in FY09: \$850K
- Funding for FY10: \$450K

Partners/Collaborators


- University of Hawaii/HNEI
- University of Connecticut
- University of South Carolina
- Clemson University
- SRNL
- NIST
- NREL
- ANL

OUTLINE

- Working Group 12 Activities: LANL's Role
- Technical Approach:
 - 1. Experimental Set-up
 - 2. Testing Results/Findings: MEAs (Commercial and LANL)
 - 3. On-going tests
- Future Direction
 - 1. Testing Gaps
 - 2. Needed discussions

LANL's Role in WG-12

Technical Approach

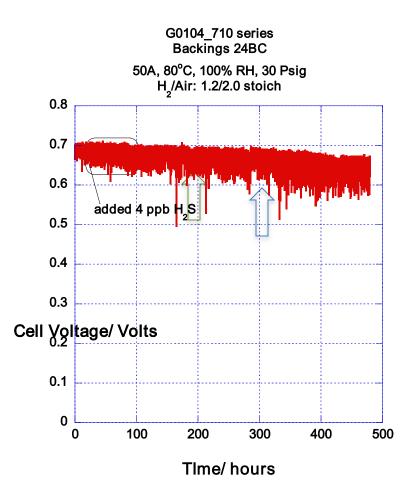
- Help determine levels of constituents for the development of an International Standard for H₂ fuel quality
- Test the critical constituents (NH₃, CO, and H₂S)
- Tested at various conditions (Loadings, Rel. humidity, Concentrations)
- Present data at the Working Group 12 Meetings
- Data was presented in FY09 at meetings held in Berlin, Germany...Seoul, Korea...San Francisco, CA.
- Open discussions with the members of TC197/WG-12 members

Testing Parameters/Set-up

- Fuel Cell: 50 cm² Active Area
- Gas Diffusion Media: SGL 24 BC
- Calibrated MKS flow controllers
- Certified Impurities introduced via by passing humidifiers after matching the back pressure
- Electrolysis-grade H2/Air(oiless-compressor)
- Focus Impurities: H₂S and Mixtures of H₂S, NH₃ and CO at both ISO levels

ISO Fuel Specification (previous versus current levels)

Initial levels in the fuel specification were determined by detection limits.

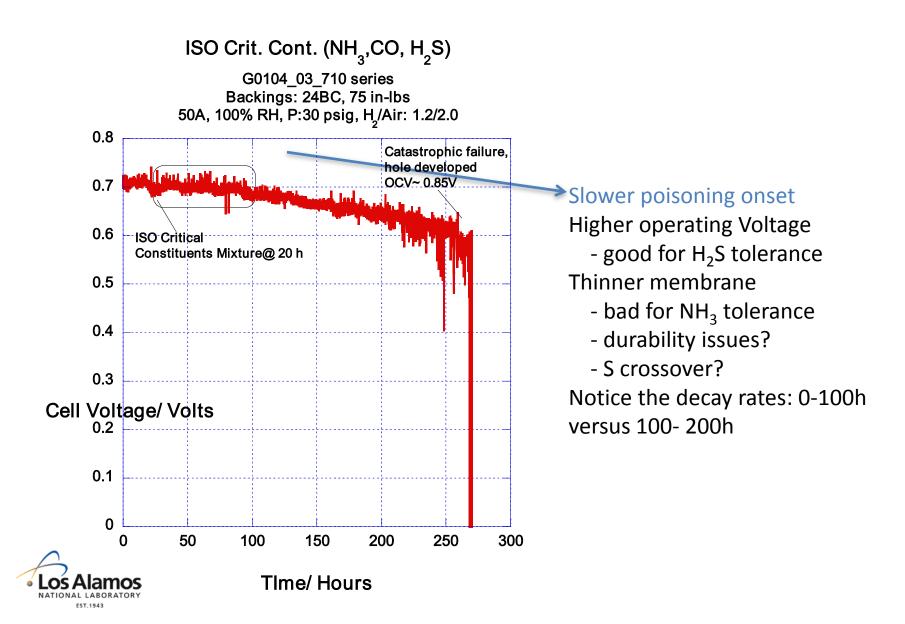

Parallel Efforts by WG-12:

•Determine the impact on FC experimental, using the specified contaminant levels

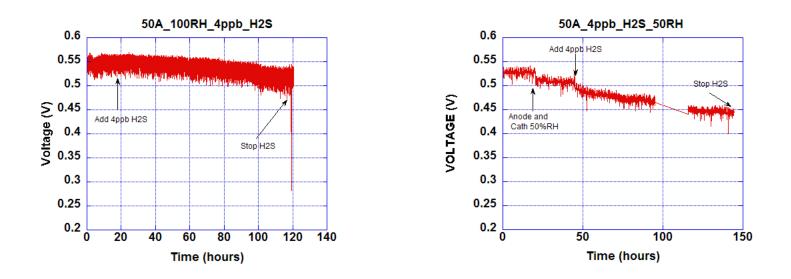
•Improve analytical capabilities to detect below the given limits

H₂S Gore Standard MEAs

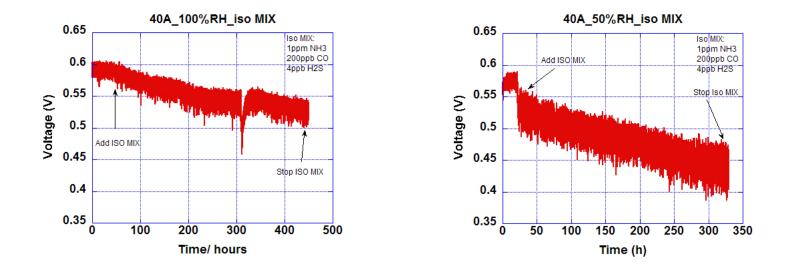
G0104_710 series Backings: 24BC, 75 in-lbs 50A, 100% RH, P:30 psig, H₂/Air: 1.2/2.0


Slower poisoning onset

Higher operating Voltage
good for H₂S tolerance
4 ppb H₂S for short term may be tolerable


But if accumulation occurs these result will differ, the decay rates increases with time. (i.e. 0-100h, 100-200h, 200-300h)

MEAs ISO Mixture


H₂S at ISO levels - isolated and combined shorter duration

- Results shown reflect 4 ppb H₂S at 100% RH and 50% RH, 80C, 30 psig
- After 100 hrs of exposure FC at 100% RH decrease ~30 mV, while the cell operating at 50% RH decreased by >50mV

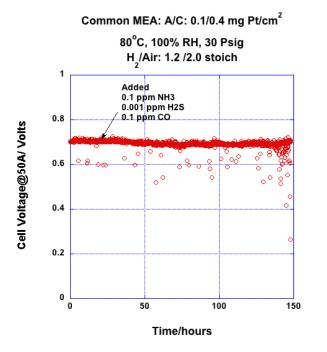
H₂S at ISO levels - isolated and combined

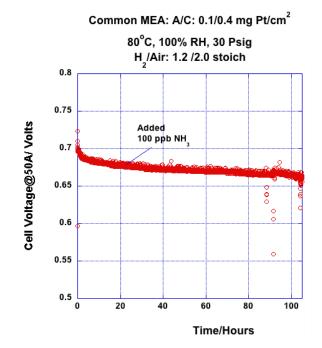
• Results shown reflect ISO mix with NH3, CO, and H2S at 100% RH and 50% RH, 80C, 30 psig

• After 300 hrs of exposure FC at 100% RH decrease \sim 50 mV, while the cell operating at 50% RH decreased by \sim 100mV

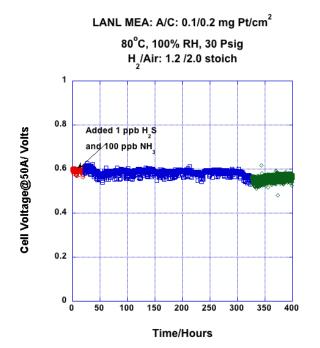
Testing Gaps/Challenges:

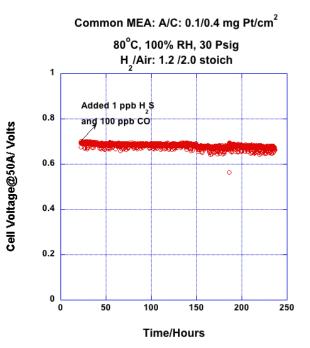
What tests remain to better determine the fuel specification?

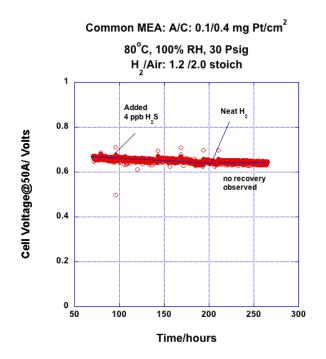

- 1. Testing Critical Constituents at reduced levels.
- Reduce anode loading: 0.05 mg Pt/cm²(DOE's 2015 target)
- 3. Short term tests: typical vehicle operation \approx 5-10hrs
- 4. Start/stop FC operation
- 5. Aged studies

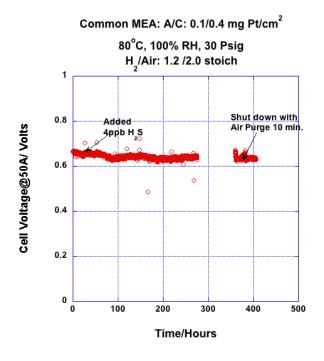

With respect to the critical constituents:

- 1. Test are underway. Preliminary results are included.
- 2. Lower Pt loadings may increase performance losses via surface poisoning and/or within the catalyst layer.
- 3. Short term tests may help reduce the build-up of adsorbates and/or cation uptake
- 4. Shut down may be to some extent be helpful as a recovering strategy (introduction of air to remove excess H₂)
- 5. Aged fuel cells may inhibit particle growth and/or ionomer loss (similar to lowering Pt loading)


On Going Efforts: Modified Levels




On-Going Efforts: Modified Levels



H₂S: Impact of Shut-down?

Conclusions

- Significant efforts have been made by the Working Group 12 both by experimenters and analytical methods developers.
- The ISO specifications has been changed and tests are currently underway to investigate the impact of the reduced contaminant levels.

