Risk-Informed Separation Distances for H₂ Facilities

Jay Keller (Presenting) Daniel Dedrick, Greg Evans, Bill Houf, Chris Moen, Jeff LaChance, Adam Ruggles, Bob Schefer, Bill Winters, Yao Zhang Sandia National Laboratories Erik Merilo, Mark Groethe SRI

> Presented at U.S. DOE Hydrogen Program Annual Merit Review June 9, 2010

SCS011

5/8/2010

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

C&S Enable H₂ Infrastructure Development

Consider Refueling Stations: 76 stations in the US and Canada (Oct 2008) Regina Winnipeg Seattle MINN MONTANA NORTH DAKOTA WASH. Minneapolis MICH OREGON S. DAK. Boise WYOMING Bostor New York NEBR NEVADA Philadelphia UTAH San Francisco Washington, D.C. KANSAS Virginia Beach Char Memphis Los Angel OKLA. ARK Atla TEXAS Dallas ALA. MISS GA New Orleans CHIHUAHUA Houston SONORA COAHUIL MEXICO Gulf of Mexico Monterrey Miami Nassau Culiacár NHA 2010 Fuel Cell Report

Availability of fuel within existing fueling station footprint is integral to hydrogen infrastructure development

Need a defensible and traceable basis for Regulations, Codes and Standards

Risk-Informed C&S are Integral to Infrastructure Development

Separation Distances Define the Spatial Requirements

Specified distances between a hazard and a target

H₂ System

human, equipment, ignition sources, etc

- Established distances did not reflect high pressures (70 MPa)
- Basis for established distances are undocumented
- Several options to establish new separation distances
 - Subjective determination (expert judgment)
 - Deterministically, based on leak scenario
 - Based only on risk evaluation as suggested by the European Industrial Gas Association (IGC Doc 75/07/E)

Risk-informed process combines risk information, deterministic analyses, and expert judgment

Appropriate and effective requirements

Quantifying the Consequence of a H₂ Release is Integral

Nighttime photograph of 41 MPa large-scale H₂ jet-flame test (d_j = 5.0mm) from Sandia/SRI tests.

- Exposure to a H₂ plume can result in
 - Heating from radiation
 - Flame impingement
 - Combustible cloud contact (unignited jet)
- Experimental measurements are necessary to characterize behavior
 - Flame shape and impingement distances vs flow rates
 - Hydrogen flame radiation values
 - Lean ignition limits for hydrogen/air
 - Computational models are built and validated with experiments
 - Jet flame radiation model
 - Unignited jet flammability limit model

Allows for mitigation strategies (e.g. detection)

Validated Engineering Model is Based on Jet-flame Correlations

Model Reproduces H₂ Jet-flame Data

SRI Test Facility Baseline circular nozzle, 7.94 mm

Horizontal Flame 3.6 - 4.3 m long, 0.6 - 1m wide

Comparison of Simulations with Heat Flux Data

5/8/2010

Simulation of SRI/Sandia Jet Flame Experiment Tank Pressure = 17 MPa Tank Volume = 0.098 m³

Comparison of Simulations with Heat Flux Data

Model Predicts Flammability Region for High-Momentum H₂ Jets

 Effective diameter nozzle expansion for underexpanded jet

- D_{eff} = ($\rho_{exit}V_{exit}$ / $\rho_{eff}V_{eff}$)D - V_{eff} = V_{exit} + (P_{exit} - P_{amb})/ $\rho_{exit}V_{exit}$
- Entrainment law for turbulent jets

5/8/2010

- $C_{cl}(x) = KD/(X+X_{o})(\rho_{amb}/\rho_{H_{2}})1/2$
- $C(x,r) = C_{cl}(x) \exp(-K_{c}(r/(x + x_{o}))2)$
- $K_c = 57; K = 5.40; D = Diameter$

- Model based on experimental data
 - Verified against natural gas and ethylene jets data of Birch et al., 1984
 - Adapted to H₂ properties
 - Verified using H₂ Navier-Stokes CFD

Predicted Jet Centerline Concentration vs Natural Gas Data

Predicted Flammability Region for High-Momentum H₂ Jets

Simulation of H_2 Concentration in a High Momentum Jet Exiting into Air 20.8 MPa, Dia. = 3.18 mm

- Lower Flammability Limits for H₂*
 - Upward-propagating flame 4% v.f.
 - Horizontal-propagating flame 7.2% v.f.
 - Downward-propagating flame 9.5% v.f.

10-20% uncertainty in hazard length scales

Deterministic-based separation distances vary significantly

Vational aboratories

5/8/2010

NFPA Risk-Informed Approach to Select Leak Diameter

- Select typical gaseous storage systems as basis for evaluation
- Examine appropriate leakage data to determine leak size distribution
 - Selected leak size that encompasses a 95% percent of leaks within the typical systems and could be expected during the lifetime of a facility
- Used QRA to determine if risk from leaks greater than selected leak size is acceptable for typical systems

Data needed: component leakage frequency

- Very little hydrogen-specific data available:
- Not enough for traditional statistical approach
- Instead, representative values are selected from NG systems
- Problems with this approach:
- not hydrogen specific
- Parameter uncertainty distribution is uncharacterized
- Solution:
- Use Bayesian statistics to generate leakage frequencies
 - Combine sources of generic data with H2 specific data
- Allows attachment of different "layers" of significance to the data

Mean Component Leakage Frequencies from Bayesian Analysis

Bayesian leak-frequency data determines system leakage probability

Considering the representative facility layout diagrams:

Expert opinion used to select 3% of system flow area

- captures >95% percent of the leaks
- the resulting separation distances protect up to the 3% leak size
- A risk analysis (QRA) performed to determine if associated risk from leaks greater than this is acceptable

Risk Evaluation Includes Frequency and Consequence

Risk = Frequency X Consequence

Risk evaluation requires:

- Definition of important consequences
- Definition of acceptable risk levels
- Comprehensive evaluation of all possible accidents
- Data analysis for quantification of QRA models
- Accounting for parameter and modeling uncertainty

Risk Approach for Establishing Adequacy of Safety Distances

Uniform Risk Acceptance Guideline is Required

- Individual fatality risk to most exposed person at facility boundary
- Use risk "Guideline" versus "Criteria"
 - Criteria varies for different countries and organizations
 - Making decisions based on comparison to hard risk criteria difficult because of uncertainties in risk evaluations

NFPA Working Group chose 2E-5 fatalities/yr as guideline

- Comparative risk to gasoline stations
- 10% of risk to society from all other accidents
- 1E-5/yr is a value used by most countries that have established a risk criteria

Representative Systems with Different Pressure Regimes

J. LaChance et al., "Analyses to Support Development of Risk-Informed Separation Distances for Hydrogen Codes and Standards", SANDIA REPORT, SAND2009-0874, Printed March 2009

- Risk close to the "guideline" of 2E-5 fatalities/yr selected by experts (NFPA Task Group 6)
- Risk from leaks greater than 3% of flow area were deemed acceptable

NFPA Adopts Risk-Informed Approach for Model Codes

- NFPA 55 voted to accept the new hydrogen bulk storage separation distances table
 - New table approved for NFPA 55 and 52 (available in 2010 editions)
 - New table to be included in NFPA 2
 - HYPOC supported inclusion in IFC by referencing back to the new table in NFPA 55 (available in 2010 edition of IFC).
- ISO has adopted a similar approach

This provides a model further C&S development, e.g.

- Requirements related to liquid hydrogen
- Requirements related to indoor refueling

- The use of risk information in establishing code and standard requirements enables:
 - An adequate and appropriate level of safety
 - Deployment of hydrogen facilities are as safe as gasoline facilities

This effort provides a template for clear and defensible regulations, codes, and standards that will enable International Market Transformation

Courtesy of Nuvera Fuel Cells

