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C&S Enable H2 Infrastructure 
Development

Consider Refueling Stations:
• 76 stations in the US and Canada (Oct 2008)

5/8/2010

Availability of fuel within 
existing fueling station 
footprint is integral to 
hydrogen infrastructure 
development

Courtesy of Air Products

NHA 2010 Fuel Cell Report

Need a defensible and traceable basis for 
Regulations, Codes and Standards
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System Definition

Risk Assessment

Hazard Analysis Consequence
Analysis

Codes and Standards 
Development

Infrastructure Development

Failure data
Accident frequencies, 

event probabilities

Operation,
Performance

Requirements

Characterize
behavior

(fundamental 
understanding)Risk Acceptance 

Guidelines

Risk-Informed C&S are Integral 
to Infrastructure Development
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Separation Distances Define the 
Spatial Requirements

• Specified distances between a hazard and a target

– Established distances did not reflect high pressures (70 MPa) 
– Basis for established distances are undocumented 

• Several options to establish new separation distances
– Subjective determination (expert judgment)
– Deterministically, based on leak scenario
– Based only on risk evaluation as suggested by the European 

Industrial Gas Association (IGC Doc 75/07/E)

Risk-informed process combines risk information, 
deterministic analyses, and expert judgment

H2 System
human, equipment, 
ignition sources, etc

Appropriate and effective requirements



5/8/2010

Nighttime photograph of 41 MPa large-scale 
H2 jet-flame test (dj = 5.0mm) from 
Sandia/SRI tests.

 

11.3 m

Quantifying the Consequence of a H2
Release is Integral

• Exposure to a H2 plume can result in
– Heating from radiation
– Flame impingement 
– Combustible cloud contact (unignited jet)

• Experimental measurements are 
necessary to characterize behavior
– Flame shape and impingement distances 

vs flow rates
– Hydrogen flame radiation values
– Lean ignition limits for hydrogen/air

• Computational models are built and 
validated with experiments
– Jet flame radiation model
– Unignited jet flammability limit model

Allows for mitigation strategies (e.g. detection)
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Radiant Fraction (Xrad)
Visible Flame Length

Radiant Power

q(x,r)

• SRI Test Facility
• Baseline circular  nozzle, 7.94 mm

q(x,r) = C*Xradmfuel∆Hc

r2

f

Horizontal Flame
3.6 - 4.3 m long, 0.6 - 1m wide

(1)  Houf & Schefer, “Predicting Radiative Heat Fluxes and Flammability Envelopes from Unintended Releases of 
Hydrogen,” Int. Jour. Hydrogen Energy, Vol. 32, pp. 136-151, 2007.

(2)  Schefer, Houf, Bourne, Colton, “Spatial and Radiative Properties of an Open-Flame Hydrogen Plume,” 
Vol. 31,  pp. 1332-1340, 2006.

(3)  Schefer, Houf, William Bourne, Colton, “Characterization of High-Pressure Underexpanded Hydrogen-Jet
Flames,” Vol. 32, pp. 2081-2093, 2007.

H2 jet-flame radiation model verified at press. of (17 & 41 MPa)

Validated Engineering Model is Based 
on Jet-flame Correlations
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SRI Test Facility
Baseline circular  nozzle, 7.94 mm 

Simulation of SRI/Sandia 
Jet Flame Experiment
Tank Pressure = 17 MPa 
Tank Volume = 0.098 m3
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Model Reproduces H2
Jet-flame Data
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High Momentum H2 Jet Exiting to Air

Predicted Jet Centerline Concentration vs Natural Gas Data
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Model Predicts Flammability Region for 
High-Momentum H2 Jets

• Model based on experimental data 
– Verified against natural gas and 

ethylene jets data of Birch et al., 1984 
– Adapted to H2 properties
– Verified using H2 Navier-Stokes CFD

• Effective diameter nozzle expansion 
for underexpanded jet
– Deff= (ρexitVexit/ ρeffVeff)D
– Veff = Vexit + (Pexit -Pamb)/ ρexitVexit

• Entrainment law for turbulent jets
– Ccl(x) = KD/(X+Xo )(ρamb/ ρH2

)1/2
– C(x,r) = Ccl(x)exp(- Kc (r/(x + xo))2)
– Kc = 57;  K = 5.40; D = Diameter
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Simulation of H2 Concentration in a High Momentum 
Jet Exiting into Air 20.8 MPa, Dia. = 3.18 mm
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Pressure = 20.8 MPa

*(Coward and Jones, 1952)  (Zebetakis, 1965)

Predicted Flammability Region for 
High-Momentum H2 Jets

• Lower Flammability Limits for H2*
– Upward-propagating flame - 4% v.f.
– Horizontal-propagating flame  - 7.2% v.f.
– Downward-propagating flame - 9.5% v.f.

10-20% uncertainty in 
hazard length scales
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Deterministic-based separation 
distances vary significantly
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Need to select leak diameter 
with a risk-informed approach
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NFPA Risk-Informed Approach to 
Select Leak Diameter

• Select typical gaseous storage systems as basis for 
evaluation

• Examine appropriate leakage data to determine leak size 
distribution
– Selected leak size that encompasses a 95% percent of leaks 

within the typical systems and could be expected during the 
lifetime of a facility

• Used QRA to determine if risk from leaks greater than 
selected leak size is acceptable for typical systems
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Data needed: component 
leakage frequency

Very little hydrogen-specific data available:
• Not enough for traditional statistical approach
• Instead, representative values are selected from 

NG systems

Problems with this approach:
• not hydrogen specific
• Parameter uncertainty distribution is 

uncharacterized

Solution:
• Use Bayesian statistics to generate

leakage frequencies
– Combine sources of generic data

with H2 specific data
• Allows attachment of different “layers”

of significance to the data
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Mean Component Leakage 
Frequencies from Bayesian Analysis

Hydrogen Leakage Frequencies
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Bayesian leak-frequency data determines 
system leakage probability
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Expert opinion used to select 3% of system flow area
• captures >95% percent of the leaks
• the resulting separation distances protect up to the 3% leak size
• A risk analysis (QRA) performed to determine if associated risk from 

leaks greater than this is acceptable

Considering the representative facility layout diagrams: 
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Risk Evaluation Includes Frequency 
and Consequence

Risk = Frequency X Consequence

Risk evaluation requires:
• Definition of important consequences
• Definition of acceptable risk levels 
• Comprehensive evaluation of all possible accidents
• Data analysis for quantification of QRA models 
• Accounting for parameter and modeling uncertainty
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Risk Approach for Establishing 
Adequacy of Safety Distances
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Uniform Risk Acceptance 
Guideline is Required

• Individual fatality risk to most exposed person at facility 
boundary

• Use risk “Guideline” versus “Criteria”
– Criteria varies for different countries and organizations 
– Making decisions based on comparison to hard risk criteria difficult 

because of uncertainties in risk evaluations

NFPA Working Group chose 2E-5 fatalities/yr as guideline
• Comparative risk to gasoline stations
• 10% of risk to society from all other accidents
• 1E-5/yr is a value used by most countries that have established a 

risk criteria



Representative Systems with Different 
Pressure Regimes
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• Risk close to the “guideline” of 2E-5 fatalities/yr 
selected by experts (NFPA Task Group 6)

• Risk from leaks greater than 3% of flow area were 
deemed acceptable

Total Risk 20.7 MPa (3000 psig) System Total Risk 103.4 MPa (15000 psig) System     
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J. LaChance et al., “Analyses to Support Development of Risk-Informed Separation Distances for Hydrogen 
Codes and Standards”, SANDIA REPORT, SAND2009-0874, Printed March 2009



NFPA Adopts Risk-Informed 
Approach for Model Codes

• NFPA 55 voted to accept the new
hydrogen bulk storage separation
distances table
– New table approved for NFPA 55 and 52

(available in 2010 editions)
– New table to be included in NFPA 2
– HYPOC supported inclusion in IFC by 

referencing back to the new table in NFPA 
55 (available in 2010 edition of IFC).

• ISO has adopted a similar approach

This provides a model further C&S development, e.g.
– Requirements related to liquid hydrogen
– Requirements related to indoor refueling

5/8/2010
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Conclusion

• The use of risk information in establishing code and 
standard requirements enables:
– An adequate and appropriate level of safety
– Deployment of hydrogen facilities are as safe as gasoline 

facilities

Courtesy of Nuvera Fuel Cells

This effort provides a template for 
clear and defensible regulations, 
codes, and standards that will enable
International Market Transformation
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