Compact (L)H₂ Storage with Extended Dormancy in Cryogenic Pressure Vessels

Salvador Aceves, Gene Berry, Francisco Espinosa, Guillaume Petitpas, Tim Ross, Vernon Switzer, Ray Smith

Lawrence Livermore National Laboratory June 8, 2010

Project ID #

ST003

This presentation does not contain any proprietary or confidential information

Overview

Timeline

- Start date: October 2004
- End date: Sept. 2011
- Percent complete: 80%

Budget

- Total project funding
 DOE: \$4.5M
- Funding for FY09:
 \$2.25M
- Funding for FY10:
 \$440k

Barriers

- A. Volume and weight
- B. Cost
- O. Hydrogen boil-off

Targets

- Ultimate volume target
- Ultimate weight target

Partners

- CRADA with BMW
- CRADA with Structural Composites Industries (SCI)

Relevance: High density cryogenic hydrogen enables compact, lightweight, and cost effective storage

 Cost effective: Cryogenic vessels use 2-4x less carbon fiber, reducing costs sharply at higher capacity

 Compact: 235 L system holds 151 L fuel (10.3-10.7 kg H₂)

Relevance: Cryogenic pressure vessels can *exceed* 2015 H₂ storage targets and approach *ultimate*

gravimetric energy density (H₂ Weight %)

Approach: reduce/eliminate H₂ venting losses by researching vacuum stability, insulation, and para-ortho conversion

Parahydrogen

Orthohydrogen

- Determine para-ortho effect on pressurization and venting losses
- Directly measure para-ortho populations
- Determine vessel heat transfer mechanism (radiation vs. conduction)
- Evaluate vacuum stability by measuring pressure vessel outgassing
- Test ultra thin insulation for improved vessel volume performance
- Improve vessel design based on experimental results

Hydrogen has two nuclear spin states: para-H₂ (stable at 20 K) and ortho-H₂

Equilibrium molar fraction

Para-ortho conversion absorbs energy & increases dormancy (equivalent to a second evaporation)

Rotational Raman spectroscopy quantifies the population of para-H₂ and ortho-H₂ energy levels

Gas samples from full-scale vessel were analyzed for para-H₂ concentration within 10 minutes of collection

Full-scale vessel

Sample delivery (~10 min) to laser lab

Spectral results

Raman measurements of samples from Prius show a 12 day lag of ortho conversion then S-curve approach to equilibrium

LLNL's 5,000 psi cryogenic pressure vessel fueled with LH₂ retained 75% of its fuel after a 1 month experiment

A 95% full vessel warms from 23 K to 69 K in 8.3 days, pressurizing to 5,000 psi with no evaporative loss

Conversion to ortho-H₂ was observed between 75 and 110 K increasing dormancy by ~1 week

Vacuum Pressure [Torr]

Hydrogen annual merit review, LLNL, June 8, 2010, p. 21

Vacuum Pressure [Torr]

Composite outgassing research necessary for establishing suitable getters for long-term vacuum stability

Oven in pressure cell

1 liter vessel under vacuum in oven

Hydrogen annual merit review, LLNL, June 8, 2010, p. 22

- Pre-bake vessels to 80°C: Determine if H₂O can be essentially eliminated
- Run outgassing tests at 20, 60 and 80°C: Establish effect of temperature on outgassing rate and composition
- Cycle vessels 10 & 100 times with cooled gas: separate mechanical and thermal effects by cycling vessels without compression heating
- Outgassing from vacuum cured vessels with/without UV coating:
 Investigate processing effects on outgassing, and potential cycling effects on coatings

We have quantified composite vessel outgassing as a function of temperature, pressure cycling, and surface treatment

Water is eliminated by baking but hydrocarbons are not. Detailed outgassing composition necessary for finding appropriate getters for long-term vacuum stability

	Experiment 1, no cycling			Experiment 2: 10 cycles			Experiment 3: 100 cycles			Experiment 4: 100 cycles		
Compound (and boiling point)	20C	60C	80C	Cycle test	60C	80C	Cycle test	20C	60C	20C	60C	
Water (100°C)	0	0	0	0	0	0	0	0	0	0	0	
Acetaldehyde (20.2°C)					56	140	12	<1	14	<1	36	Ö
Acetone, (56.5°C)	<1	180	760	140	140	580	170	11	150	<1	390	
Ethanol, (78.4°C)			96			97			20		98	\sim
Isopropyl alcohol (83.6°C)	<1	60	80	48	110	220	38	<1	80	<1	160	0
Acetic acid butyl ester (126°C)	<1	690	1700	270	260	1200	370	10	380	55	740	$\dot{\downarrow}$
Ethyl benzene (136°C)	<1	20	50	9	10	36	16	<1	18	1.1	46	0
Xylenes, total (140°C)	<1	76	240	33	39	160	53	3	72	4.1	160	
Styrene (145°C)	<1	21	64	9.2	11	47	14	<1	18	1.1	37	0
2-heptanone (151°C)	<1	1300	3000	350	570	2400	460	23	770	23	1300	1 L
1, 3, 5 trimethylbenzene (164°C)	<1	2	<1	1.2	1.7	4.4	1.6	<1	2.2	<1	<1	
1, 2, 4 trimethylbenzene (169°C)	<1	2.8	10	1.6	2.1	7.1	2	<1	3.6	<1	5.4	
Carbon disulfide	<1						39	48	10	<1	16	1
Total hydrocarbons	0	2351.8	6000	862	1199.8	4891.5	1175.6	95	1537.8	84.3	2988.4	

We are acquiring a pressurized cryogenic H₂ fueling capability

 We currently fill at low pressure from a conventional LH₂ storage vessel

- A high pressure LH₂ pump offers rapid single phase refueling without boil-off
- Single flow refueling can be reliable and cost effective
- Site Permission and Utilities granted. Will also serve for high pressure cryogenic H₂ testing
- *For full details*, attend PD074 tomorrow (Wed) at 1:45 pm

BMW cryogenic high-pressure pump

H₂ liquefaction is energy and capital intensive, but total user energy and cost is what matters

\$25 Base Cases for 5.6 kg usable H Processing Note: These results should be considered in context. of their overall performance and off-board costs BROR Source: Tiax \$20 Wate Recovery Sub System
 Catalytic System Cost, SikWh \$10 \$10 15 Reacto Dehydriding 13 Sub-system Media / H2 \$5 DOE 2010 Target (\$4/kWh 350 bar 700 bar Sodium LCH2 Cryo-Alanate preliminary Compressed Compressed (5.6 kg) (10.4 kg)

 Liquefaction energy 4x greater than compression energy. Direct energy cost advantage for compression

 LH₂ delivery cost comparable to 350 bar Liquefaction costs balanced by lower station costs.

 LH₂ lowers onboard costs: 2-4x less carbon fiber reduces overall cost.
 Substantial cost reduction with higher capacity

The energy cost of H₂ liquefaction is outweighed by onboard storage & refueling savings, with superior range/volume

Hydrogen annual merit review, LLNL, June 8, 2010, p. 27

When considering CO₂ emissions from liquefaction, total energy cost savings offset carbonless energy *premium*

For every storage pressure there is a *reasonable breakeven* carbonless energy premium. Cryogenic pressure vessels maintain volume/range advantage

For every storage pressure there is a *reasonable breakeven* carbonless energy premium. Cryogenic pressure vessels maintain volume/range advantage

Future work: explore performance limits of vessel and cryogenic H₂ behavior: shape, scale, refueling speed, and energy efficiency

- Pressurized LH₂ offers rapid, efficient refueling and is likely necessary to achieve ultimate DOE H₂ storage goals
- *Full-scale para-ortho conversion kinetics* experiments will enable us to determine optimal vessel design parameters as well as whether liquefaction energy and cost can be reduced
- Generation 4 vessel design to maximize dormancy across the full spectrum of onboard H₂ capacities
- Multiple Volume Vessels offer flexible blend of capacity, weight, cost, shape, and dormancy over a single state H₂ storage vessel. Multiple H₂ storage states do add complexity

Collaborations:

We established cooperative research & development (CRADA) agreement with automaker and pressure vessel manufacturers

 CRADA with BMW started June 2008 to investigate vacuum stability, conduct cryogenic pressure cycling, and study conversion to ortho-H₂. BMW provides great automotive focus to our experimental and demonstration efforts.

• CRADA with Structural Composites Industries (SCI) uses LLNL's thermal/mechanical analysis capability and H_2 experience as well as SCI's composite cylinder design & manufacturing expertise to develop efficient and lower cost pressure vessels designed specifically for cryogenic H_2 storage.

Summary: Cryogenic pressure vessel dormancy and volume advantages have been demonstrated. We are studying vacuum, as well as cryogenic H₂ behavior and refueling

- 8+ day dormancy (zero evaporative losses) was demonstrated.
 Our 10.4 kg capacity vessel retained 7.5 kg H₂ after a month.
- Conversion of para-H₂ to ortho-H₂ doubled dormancy for a nearly full vessel
- Composite vessel outgassing experiments produced information necessary to select appropriate getters
- Pressurized LH₂ refueling capability will enable rapid refueling with minimum evaporative losses and potentially higher capacity fills

