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Overview

• Start date: October 2004
• End date: Sept. 2011
• Percent complete: 80%

• Total project funding 
– DOE: $4.5M

• Funding for FY09:
– $2.25M

• Funding for FY10: 
– $440k 

Timeline

Budget

Barriers

• CRADA with BMW
• CRADA with Structural 

Composites Industries (SCI)

Partners

• A. Volume and weight
• B. Cost
• O. Hydrogen boil-off

• Ultimate volume target
• Ultimate weight target

Targets
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Relevance: High density cryogenic hydrogen enables
compact, lightweight, and cost effective storage

• Cost effective: Cryogenic 
vessels use 2-4x less carbon 
fiber, reducing costs sharply at 
higher capacity

• Compact: 235 L system holds  
151 L fuel (10.3-10.7 kg H2)

Source: TIAX

Cryogenic  H2 fill line

Gaseous H2
extraction line
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Relevance: Cryogenic pressure vessels
can exceed 2015 H2 storage targets and approach ultimate

Gen 2, 10.4 kgH2

Gen 3, 10.4 kgH2

ultimate
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Approach: reduce/eliminate H2 venting losses by researching 
vacuum stability, insulation, and para-ortho conversion 

• Determine para-ortho effect on 
pressurization and venting losses

• Directly measure para-ortho 
populations

• Determine vessel heat transfer 
mechanism (radiation vs. conduction)

• Evaluate vacuum stability by 
measuring pressure vessel 
outgassing

• Test ultra thin insulation for improved 
vessel volume performance

• Improve vessel design based on 
experimental results
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Hydrogen has two nuclear spin states: 
para-H2 (stable at 20 K) and ortho-H2

para-H2 converts to 
ortho-H2 when heated

para-H2 stable at 20 K Normal H2 
(25% para, 75% ortho) 

is stable at 300 K 

para-H2

ortho-H2
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Para-ortho conversion absorbs energy & increases dormancy 
(equivalent to a second evaporation)

ΔU=700 
kJ/kg

para-H2

ortho-H2

Vaporization ΔU=452 kJ/kg
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Same frequency as laser 
(elastic scattering) 

Other frequencies 
(inelastic scattering) 

H2 sample

Diffraction 
grating

Detector

Laser
Frequency-doubled
Nd-YAG: 532.2 nm

Rotational Raman spectroscopy quantifies the population of 
para-H2 and ortho-H2 energy levels

J=0 J=2 J=1 J=3 
Rotational transition lines 
for normal H2  (75% ortho)

para

ortho
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Gas samples from full-scale vessel were analyzed for 
para-H2 concentration within 10 minutes of collection

Full-scale vessel Sample delivery (~10 min) to laser lab

Confocal laser Raman system Spectral results

Para-H2Ortho-H2
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99% para-H2
(vaporized LH2)

Continual Raman spectra 
taken at 300 K and 1 atm.

Continual monitoring of para-ortho H2 conversion 
In sample vessel validated experimental procedures
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67% para-H2

Continual monitoring of para-ortho H2 conversion 
In sample vessel validated experimental procedures

Continual Raman spectra 
taken at 300 K and 1 atm.
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51% para-H2

Continual monitoring of para-ortho H2 conversion 
In sample vessel validated experimental procedures

Continual Raman spectra 
taken at 300 K and 1 atm.
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40% para-H2

Continual monitoring of para-ortho H2 conversion 
In sample vessel validated experimental procedures

Continual Raman spectra 
taken at 300 K and 1 atm.
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25% para-H2
(normal)

Continual monitoring of para-ortho H2 conversion 
In sample vessel validated experimental procedures

Continual Raman spectra 
taken at 300 K and 1 atm.



Hydrogen annual merit review, LLNL, June 8, 2010, p. 15

25% para-H2
(normal)

Initial conversion rate: 
5% per hour, 

1% in 10 minutes

Continual monitoring of para-ortho H2 conversion 
In sample vessel validated experimental procedures

Continual Raman spectra 
taken at 300 K and 1 atm.
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measured

Model (LLNL/BMW)

equilibrium

%Ortho –H2

LH2 fill

Raman measurements of samples from Prius show a 12 day 
lag of ortho conversion then S-curve approach to equilibrium



Hydrogen annual merit review, LLNL, June 8, 2010, p. 17

LLNL’s 5,000 psi cryogenic pressure vessel fueled with LH2
retained 75% of its fuel after a 1 month experiment 

H2 Temperature

H2 Pressure

%Ortho –H2

H2 mass

LH2 fill
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A 95% full vessel warms from 23 K to 69 K in 8.3 days, 
pressurizing to 5,000 psi with no evaporative loss

H2 Temperature

H2 Pressure

H2 mass

LH2 fill
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Conversion to ortho-H2 was observed between 75 and 110 K
increasing dormancy by ~1 week

H2 Temperature

H2 Pressure

%Ortho –H2

H2 massHeat input

Drop in apparent heat flux 
due to para-ortho conversion
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Without a getter, vacuum quality degraded measurably
after two weeks, at temperatures above 80 K

H2 Temperature

Vacuum 
pressure
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Limited vacuum pumping (~ 10 minutes every 4 days)
restored vacuum quality even at higher temperatures
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Composite outgassing research necessary for establishing 
suitable getters for long-term vacuum stability  

1 liter vessel under 
vacuum in oven

Oven in pressure cell

• Pre-bake vessels to 80°C: Determine 
if H2O can be essentially eliminated 

• Run outgassing tests at 20, 60 and 
80°C: Establish effect of temperature 
on outgassing rate and composition 

• Cycle vessels 10 & 100 times with 
cooled gas: separate mechanical and 
thermal effects by cycling vessels 
without compression heating 

• Outgassing from vacuum cured 
vessels with/without UV coating:
Investigate processing effects on 
outgassing, and potential cycling 
effects on coatings
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We have quantified composite vessel outgassing as a function 
of temperature, pressure cycling, and surface treatment 

Temperature is 
most important 

factor in 
determining 
outgassing

Number of 
pressure cycles at 
fixed temperature 
plays a relatively 

minor role

UV coating considerably increases 
vessel outgassing

Significant increase in residual 
gas pressure is mainly due to 
small vacuum volume and not 
representative of automotive-

sized vessels
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Water is eliminated by baking but hydrocarbons are not.
Detailed outgassing composition necessary for finding 

appropriate getters for long-term vacuum stability
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We are acquiring a pressurized cryogenic H2 fueling capability

• We currently fill at low pressure
from a conventional LH2 storage 
vessel

• A high pressure LH2 pump offers 
rapid single phase refueling 
without boil-off

• Single flow refueling can be 
reliable and cost effective

• Site Permission and Utilities 
granted. Will also serve for high 
pressure cryogenic H2 testing

• For full details, attend PD074    
tomorrow (Wed) at 1:45 pm
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H2 liquefaction is energy and capital intensive,
but total user energy and cost is what matters

• Liquefaction energy 4x greater than 
compression energy. Direct energy cost 
advantage for compression

• LH2 delivery cost comparable to 350 bar 
Liquefaction costs balanced by lower 
station costs.

• LH2 lowers onboard costs: 2-4x less 
carbon fiber reduces overall cost. 
Substantial cost reduction with higher 
capacity

LH2

350 bar H2

Source: Argonne

Source: Tiax
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The energy cost of H2 liquefaction is outweighed by onboard 
storage & refueling savings, with superior range/volume

System vol.  224 L             262 L             329 L            160 L            231 L
Drive range 300 mi           300 mi           300 mi          300 mi          560 mi 

$8820

$9920

$11100

$8640
$9170

Vessel cost

Fuel cost
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When considering CO2 emissions from liquefaction,
total energy cost savings offset carbonless energy premium

Vessel cost

Fuel cost

System vol.  224 L             262 L             329 L            160 L            231 L
Drive range 300 mi           300 mi           300 mi          300 mi          560 mi 

Carbonless energy premium @ $0.067/kWh 

$9200

$10400

$11700

$10400
$10900
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For every storage pressure there is a 
reasonable breakeven carbonless energy premium.

Cryogenic pressure vessels maintain volume/range advantage

500 bar breakeven 
carbonless energy 

premium  $0.067/kWh 
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For every storage pressure there is a 
reasonable breakeven carbonless energy premium.

Cryogenic pressure vessels maintain volume/range advantage
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Future work: explore performance limits 
of vessel and cryogenic H2 behavior: 

shape, scale, refueling speed, and energy efficiency

• Pressurized LH2 offers rapid, efficient refueling and is likely 
necessary to achieve ultimate DOE H2 storage goals

• Full-scale para-ortho conversion kinetics experiments will 
enable us to determine optimal vessel design parameters as 
well as whether liquefaction energy and cost can be reduced

• Generation 4 vessel design to maximize dormancy across the 
full spectrum of onboard H2 capacities

• Multiple Volume Vessels offer flexible blend of capacity, 
weight, cost, shape, and dormancy over a single state H2
storage vessel. Multiple H2 storage states do add complexity
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• CRADA with BMW started June 2008 to investigate vacuum
stability, conduct cryogenic pressure cycling, and study
conversion to ortho-H2. BMW provides great automotive
focus to our experimental and demonstration efforts.

• CRADA with Structural Composites Industries (SCI) uses
LLNL’s thermal/mechanical analysis capability and H2
experience as well as SCI’s composite cylinder design &
manufacturing expertise to develop efficient and lower cost
pressure vessels designed specifically for cryogenic H2
storage.

Collaborations:
We established cooperative research & development (CRADA) 
agreement with automaker and pressure vessel manufacturers
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Summary: Cryogenic pressure vessel dormancy and volume 
advantages have been demonstrated. We are studying 
vacuum, as well as cryogenic H2 behavior and refueling

• 8+ day dormancy (zero evaporative losses) was demonstrated. 
Our 10.4 kg capacity vessel retained 7.5 kg H2 after a month. 

• Conversion of para-H2 to ortho-H2 doubled dormancy for a 
nearly full vessel

• Composite vessel outgassing experiments produced 
information necessary to select appropriate getters

• Pressurized LH2 refueling capability will enable rapid refueling 
with minimum evaporative losses and potentially higher 
capacity fills


