

Donald L. Anton Director Theodore Motyka Assistant Director

This presentation does not contain any proprietary, confidential or otherwise restricted information.

Project ID#ST004

Overview

Timeline

•Start: February 1, 2009

•End: July 31, 2014

•20% Complete (as of 3/31/10)

Budget

•Total Center Funding:

- DOE Share: \$40,715,000
- Contractor Share: \$4,396,000
- FY '09 Funding: \$5,765,000
- FY '10 Funding: \$8,342,000

Prog. Mgmt. Funding

- FY '09: \$611,000
- FY '10: \$570,000

HSECoE

Barriers

- **B. System Cost**
- C. Efficiency
- D. Durability
- G. Materials of Construction

- A. System Weight and Volume H. Balance of Plant (BOP) Components
 - **J.** Thermal Management
 - K. System Life-Cycle Assessment
 - O. Hydrogen Boil-Off
- E. Charging/Discharging Rates P. Understanding Physi/Chemi-sorption
 - S. By-Product/Spent Material Removal

Partners

Center Goals - Relevance

• Primary technical goals:

- Quantify the requirements for condensed phase hydrogen storage systems for light duty vehicle applications.
- Coordinate with all other DOE hydrogen storage programs to compile their media and systems requirements and data.
- Demonstrate the technologies required to achieve the DOE hydrogen storage 2015 goals.
- Disseminate new design tools, methodologies, and components required to develop condensed phase hydrogen storage systems.

Management goals

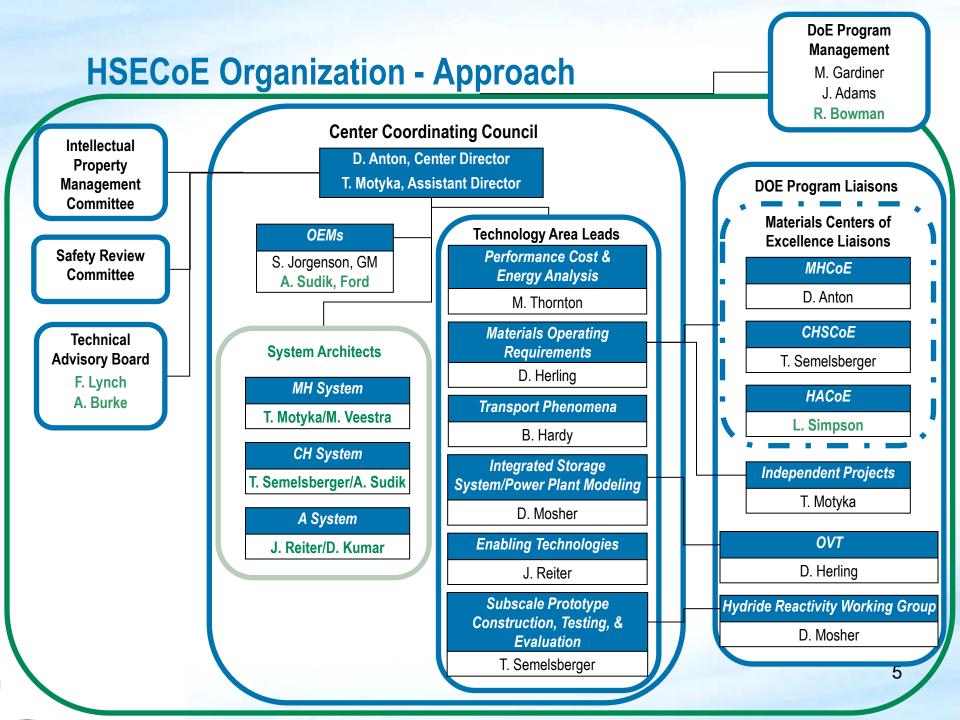
- Effectively integrate the partner's required key technical activities
- Facilitate their collaboration.
- Interface with external stake holders to communicate progress and transfer technology.

Technical Objectives - Relevance

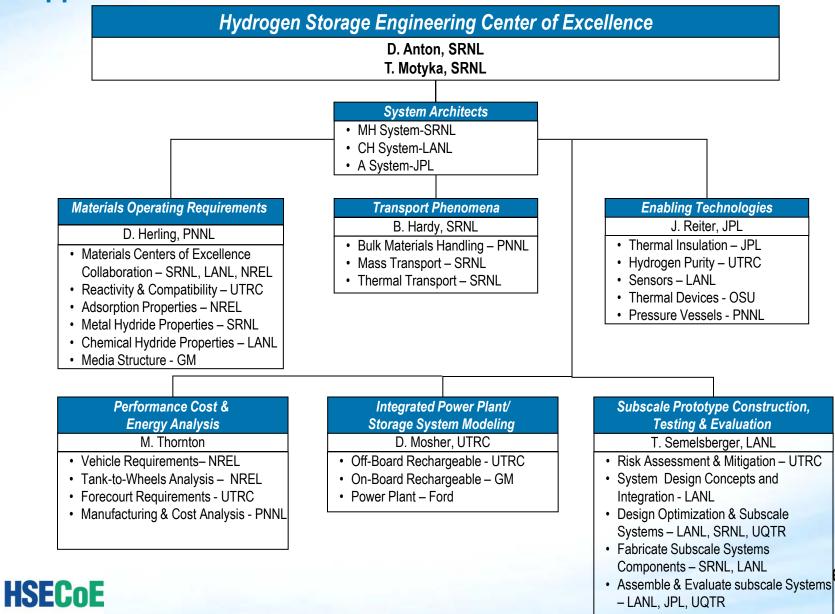
 Using systems engineering concepts, design innovative system architectures with the potential to meet DOE performance and cost targets.

• Develop system models that lend insight into overall fuel cycle efficiency.

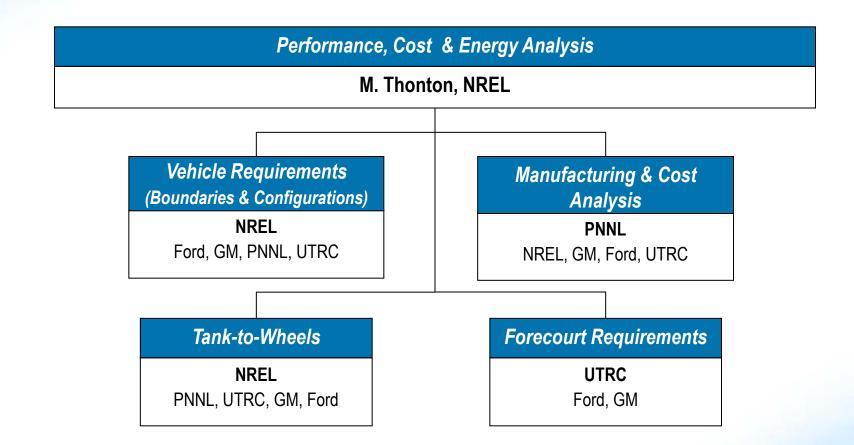
•Compile all relevant **materials data** for candidate storage media and define future data requirements.


• Develop engineering and design models to further the understanding of onboard storage **energy management requirements**.

• Develop **innovative on-board system concepts** for metal hydride, chemical, and sorption materials-based storage technologies.


 Design components and experimental test fixtures to evaluate the innovative storage devices and subsystem design concepts, validate model predictions, and improve both component design and predictive capability.

•Design, fabricate, test, and decommission the **subscale prototype systems** of each materials-based technology (metal hydrides, sorption and chemical hydrogen storage materials).



Partners Leadership Roles Approach

Partners Roles and Responsibilities Approach

Technical Matrix - Approach

		System Architects						
		Metal Hydride System	Adsorbent System	Chemical Hydride System				
	Performance Modeling & Cost Analysis							
Tec	Integrated Power Plant & Storage System Modeling							
Technology	Transport Phenomena		Fill time					
gy Areas	Materials Operating Requirements							
eas	Enabling Technologies							
	Subscale Prototype Demonstrations							

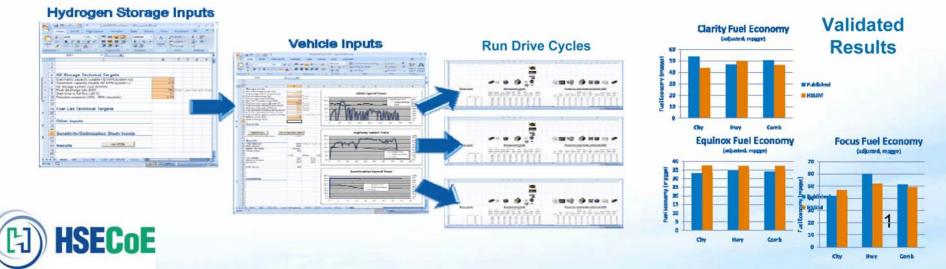
HSECoE Go/No-Go Decisions - Approach

Phase I / Phase II Go/No-Go Decision Q3 Y2:	 Provide a system model for each material sub-class (metal hydride, adsorption, chemical hydride) which shows: 4 of the DOE 2010 numerical system storage targets are fully met The status of the remaining numerical targets must be at least 40% of the target or higher
Phase II / Phase III Go/No-Go Decision Q2 Y4:	 Provide at least <u>one full scale system design</u> concept (5kg H₂ stored) where: 6 of the DOE 2015 numerical targets are fully met The status of the remaining numerical targets must be at least 50% of the target or higher

These Go/No-Go decisions require the HSECoE to consider and approach each of the DOE goals individually, and <u>not</u> concentrate only on one or two.

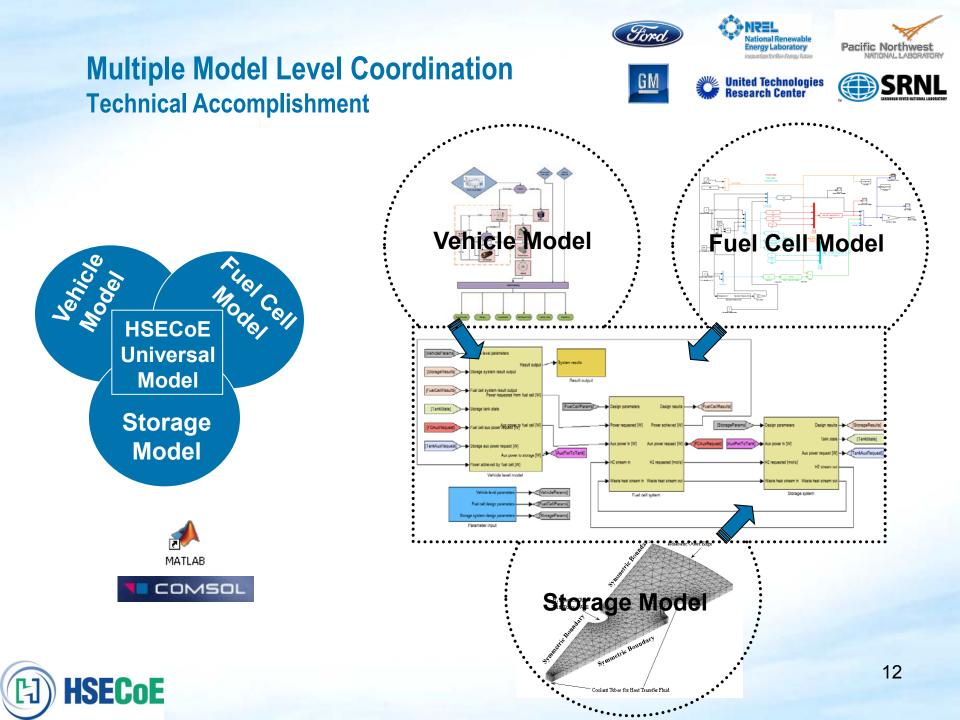
Important Dates - Approach

- Duration: 5.5 years
 - Phase 1 Start: Feb. 1, 2009
 - Phase 2 Go/No-Go Determination: April 30, 2011
 - Phase 2 Start: Aug. 1, 2011
 - Phase 3 Go/No-Go Determination: Jan. 31, 2013
 - Phase 3 Start: Aug. 1, 2013
 - Completion Date: July 31, 2014


Task Name	2009 Otr 1 Ot	tr 2 Otr 3 Otr 4	2010 Otr 1 Ot	r ¹ 2 Otr 3 Otr 4	2011 Otr 1 Otr 2 Otr 1		2012 Otr 1 Otr 2 Otr 3 Otr 4	2013 Otr 1 Otr 2 Otr 3 Otr 4	2014 Qtr 1 Qtr 2 Qtr 3 Qtr 4
Hydrogen Storage Engineering Centr of Excellence				!		0 01 4			
Phase 1 System Requirements				1					
Phase 2 Go/NoGo				-	♦ 4/30				
Phase 2 Novel ConceptsModeling, Design and Evaluation				!					
Phase 3 Go/NoGo				:				♦ 1/31	
Phase 3 Subscale Prototype Design, Construction and Evaluat				i					

Performance Analysis Technical Accomplishment

- >10x faster allowing for improved trade-off analysis
- Clear representation of technical targets to enhance target analysis

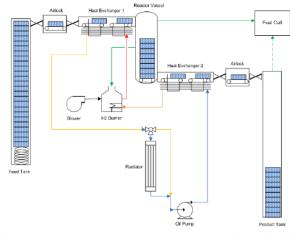


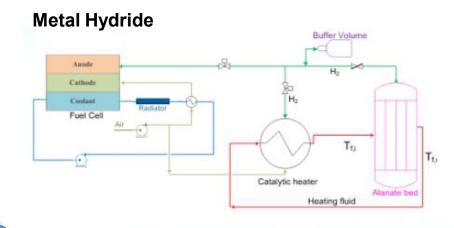
GM

Ford

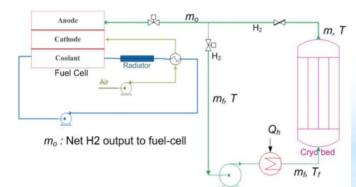
Research Center

Integrated Power Plant/Storage System Modeling Technical Accomplishment


Systems models developed for the three materials types


Anode Cathode Coolant Fuel Cell Air Water

High Pressure Metal Hydride


HSECoE

Bulk Solid Chemical Hydride

Adsorbent

	Materia	ls Candidate	Matrix	
	^{Tier 1} Developed Materials	^{Tier 2} Developing Materials	Down-select Materials	
Adsorbents	AX-21	Pt/AC-IRMOF 8	MOF 177	
Adsor	MOF 5			
Chamical Hydrides	$NH_3BH_{3(s)}$	NH ₃ BH _{3(l)}		
Char Hydi	AIH ₃	LiAlH ₄		
Metal Hydrides	NaAlH₄	Mg(NH ₂) ₂ +MgH ₂ +2LiH	MgH ₂	
Me Hydi	2LiNH ₂ +MgH ₂	TiCr(Mn)H ₂	Mg ₂ NiH ₄	

Materials Acceptability Criteria: (i) accepting materials into Tier 2 (ii) advancing materials from Tier 2 to Tier 1

Defined HSECoE Specific Material's Database

Pacific Northwest

Los Alamos

United Technologies Research Center

onal Renewabl

💼 SRNL

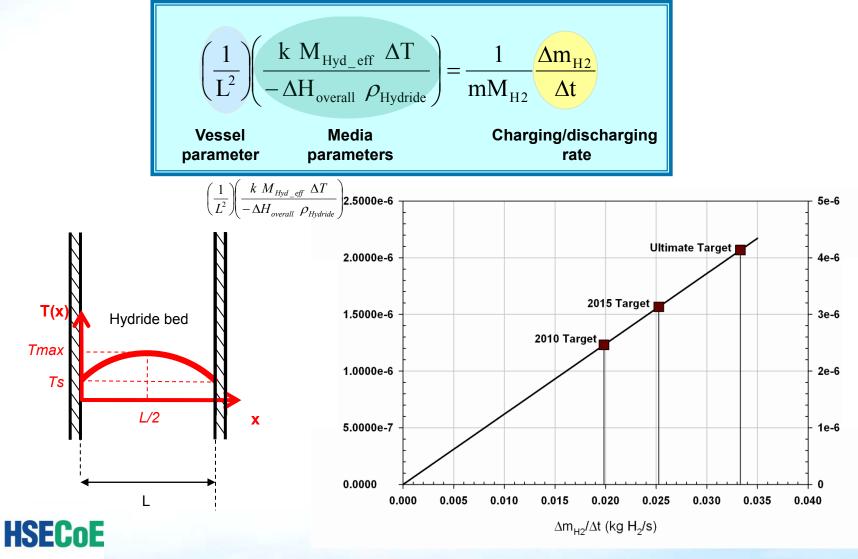
- BASF

UQTE

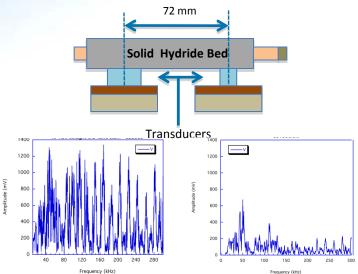
GM

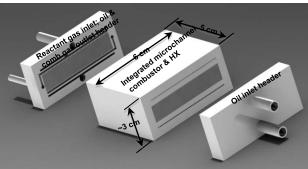
70C/1bar D			100C/1bar [110C/1bar	Decemtic	-	120C/1bar [-	80C/1bar D		
t/h	t/h	wt%	t/ h	t/h wt%	t/h	t/h	wt%	t/h	t/ h	wt%	t/h	t/ h	wt%
17.28076		-1.1485%	17.78116	0.0000 -2.6114%			-2.4216%			-2.3089%		0.0000	
17.20076		-1.1465%	17.79784	0.0167 -2.5425%			-2.3095%	15.86296		-2.3069%		0.0000	
17.31412		-1.0592%	17.81452	0.0334 -2.4875%			-2.2010%	15.87964		-1.9457%		0.0334	
17.3308		-1.0592%	17.8312	0.0500 -2.4404%			-2.2010%			-1.8102%		0.0500	
17.34748		-1.0380%	17.84788	0.0667 -2.3994%			-2.0181%	15.89032		-1.6388%		0.0667	
17.36416		-1.0409%	17.86456	0.0834 -2.3523%			-1.9218%			-1.4835%		0.0834	
17.38084		-1.0438%		0.1001 -2.3093%			-1.8296%			-1.3325%		0.1001	
17.39752		-1.0306%	17.89792	0.1168 -2.2926%			-1.7475%	15.94030		-1.1777%		0.1168	
17.4142		-1.0286%	17.9146	0.1334 -2.2319%			-1.6595%			-1.0350%		0.11334	
17.43088		-1.0280%	17.93140	0.1501 -2.1993%			-1.5796%	15.97972		-0.8886%		0.1501	
				0.1668 -2.1489%									
17.44756		-1.0050%	17.94796				-1.4939%			-0.7562%		0.1668	
17.46424		-1.0123%	17.96464	0.1835 -2.1144%			-1.3983%			-0.6140%		0.1835	
17.48092		-1.0076%	17.98132	0.2002 -2.0521%			-1.3028%			-0.4979%		0.2002	
17.4976		-1.0031%	17.998	0.2168 -2.0059%			-1.2332%			-0.3939%		0.2168	
17.51428		-1.0065%	18.01468	0.2335 -1.9735%			-1.1418%	16.0798		-0.3059%		0.2335	
17.53096		-1.0100%	18.03136	0.2502 -1.9354%			-1.0544%			-0.2360%		0.2502	
17.54764		-0.9975%	18.04804	0.2669 -1.8973%			-0.9632%			-0.1860%		0.2669	
17.56432		-0.9769%		0.2836 -1.8353%			-0.8898%			-0.1681%		0.2836	
17.581		-0.9965%	18.0814	0.3002 -1.7892%			-0.8283%	16.14652		-0.1322%		0.3002	
17.59768		-0.9662%	18.09808	0.3169 -1.7472%			-0.7530%	16.1632		-0.1363%		0.3169	
17.61436		-0.9797%		0.3336 -1.7272%			-0.6837%			-0.1363%		0.3336	
17.63104		-0.9715%	18.13144	0.3503 -1.6773%			-0.6084%			-0.1324%		0.3503	
17.64772		-0.9751%		0.3670 -1.6433%			-0.5609%	16.21324		-0.1145%		0.3670	
17.6644		-0.9569%	18.1648	0.3836 -1.5775%			-0.5055%			-0.1065%		0.3836	
17.68108		-0.9705%	18.18148	0.4003 -1.5317%			-0.4699%	16.2466		-0.0986%		0.4003	
17.69776		-0.9523%	18.19816	0.4170 -1.4978%			-0.4244%				17.06392	0.4170	
17.71444		-0.9600%	18.21484	0.4337 -1.4659%			-0.3750%	16.27996		-0.1026%		0.4337	
17.73112		-0.9438%	18.23152	0.4504 -1.4161%			-0.3453%	16.29664		-0.0947%		0.4504	
17.7478		-0.9476%	18.2482	0.4670 -1.3703%			-0.3216%			-0.1067%		0.4670	
17.76448		-0.9553%	18.26488	0.4837 -1.3166%			-0.2920%	16.33		-0.1207%	17.14009	0.4932	
17.78116		-0.9689%	18.28156	0.5004 -1.2906%			-0.2802%	16.34668		-0.0988%		0.5004	
17.79784		-0.9429%	18.29824	0.5171 -1.2410%			-0.2604%			-0.1028%	17.164	0.5171	
17.81452		-0.9348%	18.31492	0.5338 -1.2012%		0.5338	-0.2467%	16.38004			17.18068	0.5338	
17.8312		-0.9305%	18.3316	0.5504 -1.1674%			-0.2467%			-0.0989%		0.5504	
17.84788		-0.9542%	18.34828	0.5671 -1.1216%			-0.2349%	16.4134		-0.0909%		0.5671	
17.86456		-0.9460%	18.36496	0.5838 -1.0839%			-0.2270%	16.43008		-0.1209%		0.5838	
17.88124		-0.9260%	18.38164	0.6005 -1.0560%			-0.2152%			-0.1029%		0.6005	
17.89792		-0.9259%	18.39832	0.6172 -1.0143%			-0.2192%	16.46344		-0.1069%		0.6172	
17.9146		-0.9256%	18.415	0.6338 -0.9726%			-0.2192%			-0.0910%		0.6338	
17.93128	0.6505	-0.9374%	18.43168	0.6505 -0.9567%	16.5802		-0.2192%	16.4968	0.6505	-0.1070%	17.29744	0.6505	-0.65
17.94796	0.6672	-0.9372%	18.44836	0.6672 -0.9150%	16.59		Z153%	16.51348	0.6672	-0.1030%	17.31412	0.6672	-0.63

Materials Performance Models


Chemical Hydrides: $\left(\frac{dC}{dt}\right) = A \exp\left(-\frac{E}{RT}\right) (C)^{2}$	
Metal Hydrides: $\left(\frac{dC}{dt}\right) = Aexp\left(-\frac{E}{RT}\right)\left(\frac{P_e}{P_e}\right)(C)$	9
Adsorbents: $n_{ex} = n_{max} \exp\left[-\left[\frac{RT}{\alpha + \beta T}\right]^2 \ln^2\left(\frac{P_0}{P}\right)\right] - \rho$	$P_g V_a$

Transport Phenomenon Technical Accomplishment


Metal Hydride Acceptability Envelope

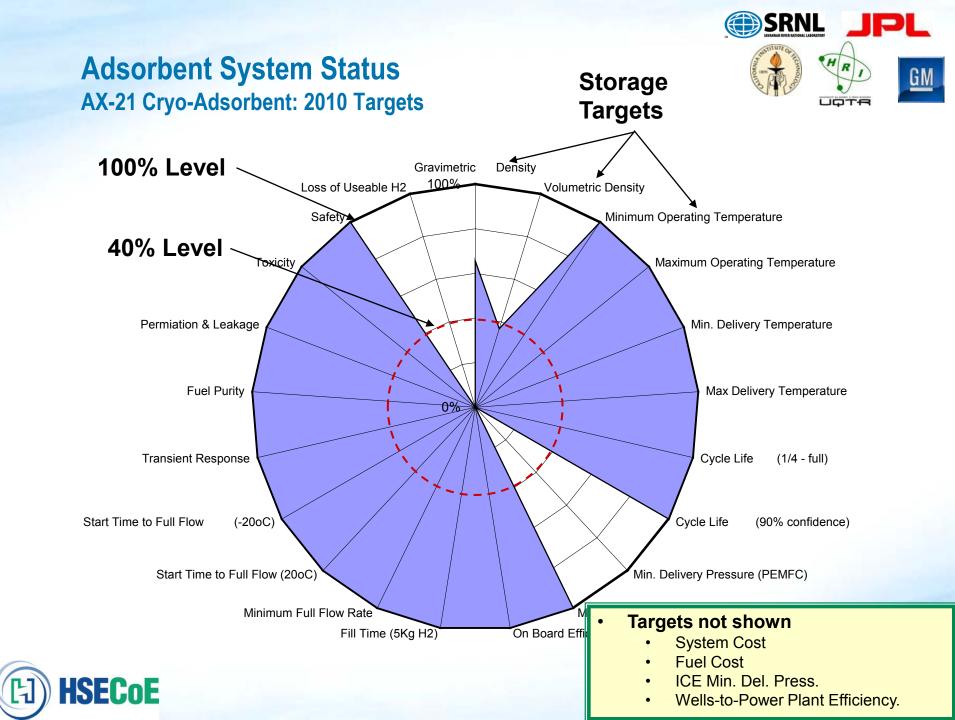


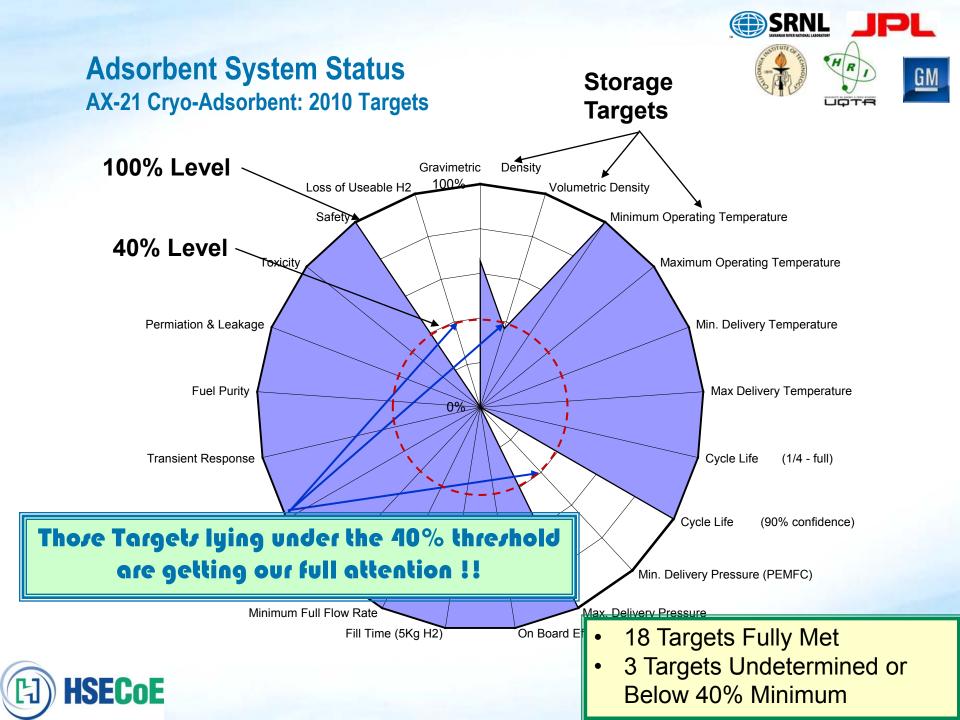
Enabling Technologies Technical Accomplishment

Acoustic Hydride Gauge Developed

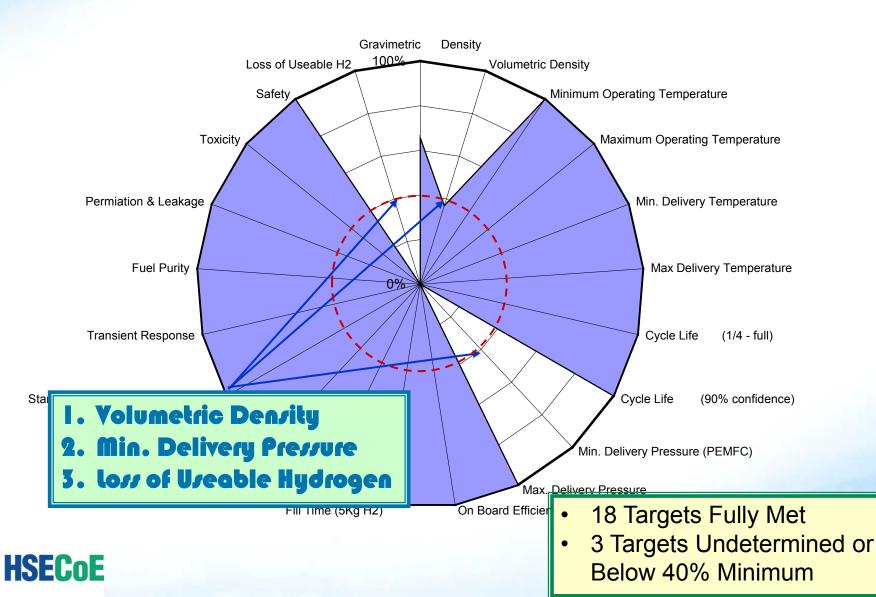
Conceptual Design of Low Mass/Volume 4.5 kW H₂ Combustor

HSECoE

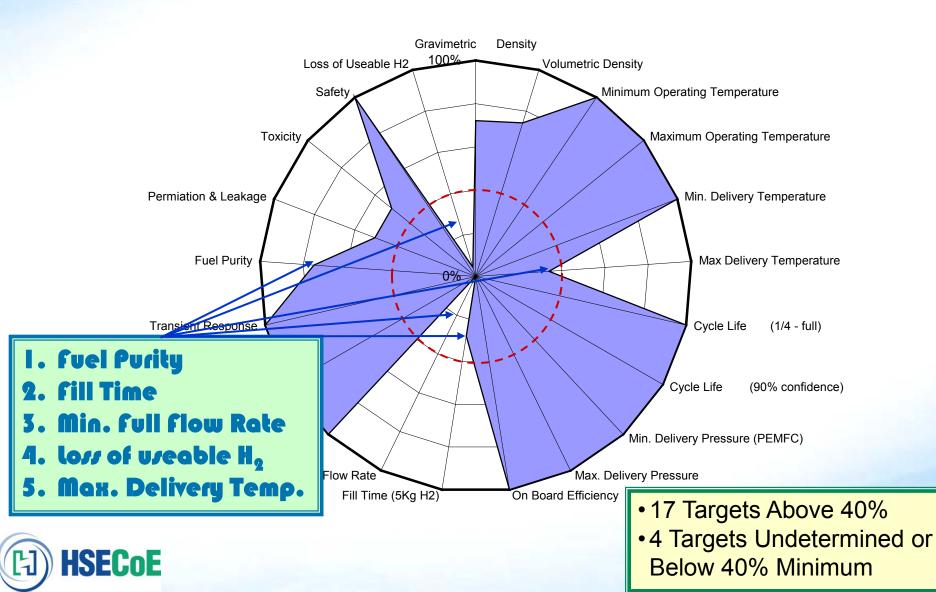

4

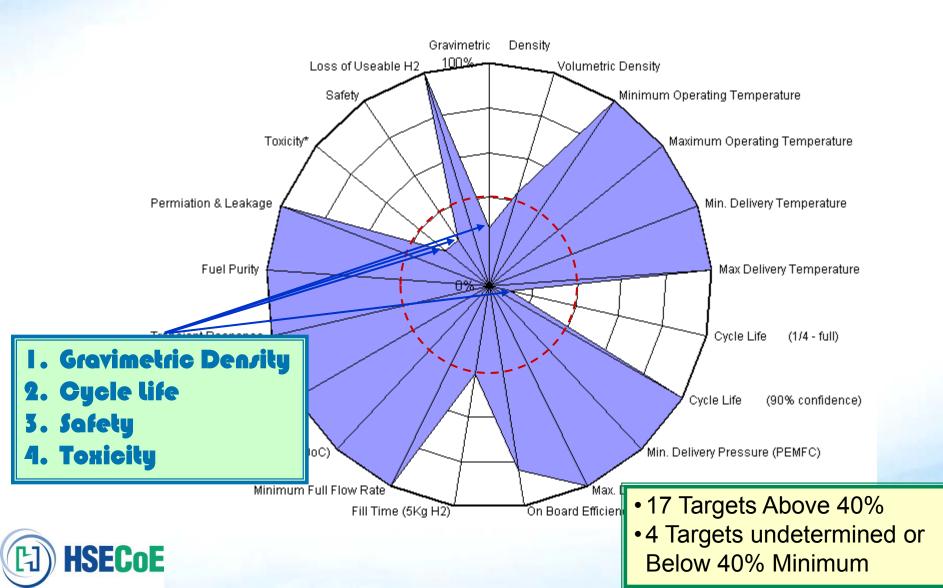

Insulative Materials Data Base Generated

Cost/Performance Analysis of Hydrogen Purification Options


Factor	Conventional Palladium Membrane	Regenerable Physical Adsorption	Chemical Absorption
Weight	Heavy	Heavy ¹⁾	Light
Volume	Big	Big	Small
Cost	Expensive	Affordable	Affordable
H ₂ loss	2-5%	High ¹⁾	Low
Pressure	≻50 psig	High pressure preferred	Atmospheric or high pressure
Temperature	300-400°C	RT	RT <t<150°c< td=""></t<150°c<>
Purity	99.9999999%	99.97%	99.97%
Life expectancy	>5 years	>2 years	1 year replacement

Adsorbent System Status AX-21 Cryo-Adsorbent: 2010 Targets




Chemical Hydride System Status Solid Ammonia-Borane: 2010 Targets

Metal Hydride System Status NaAlH₄: 2010 Targets

Future Work

Adsorbent System

- Volumetric Density
 - Compaction
- Min. Delivery Pressure
 - Thermal design
- Loss of Useable Hydrogen
 - Insulation

Metal Hydride System

- Gravimetric Density
 - Materials development
- Cyclic Life

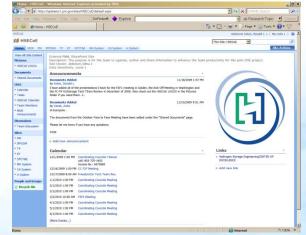
HSEC_nE

- Accelerated cyclic testing
- Safety/Toxicity
 - Risk mitigation
 - Materials development

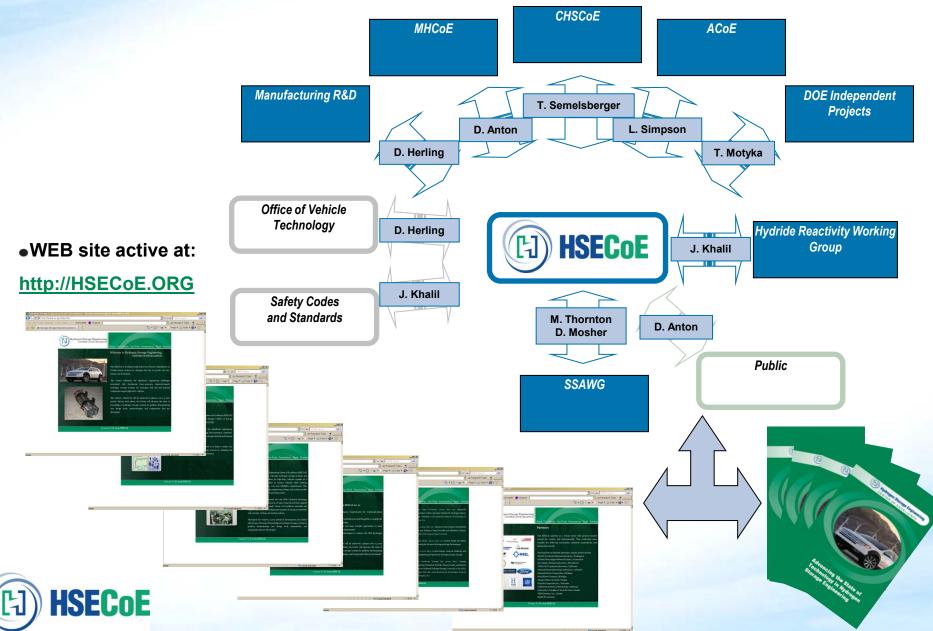
Chemical Hydride System

- Fuel Purity
 - Impurity trapping
 - Materials development
- Fill Time
 - Solid mass flow
 - System design
- Min. Full Flow Rate
 - Solid mass flow
 - Reactor Design
- Loss of Useable Hydrogen
 - Materials development
- Max. Delivery Temperature
 - Thermal Design

Intra-Center Communications


- WEB cast software Adobe Connect-Pro implemented
- Microsoft SharePoint Site Opened
 - Quarterly reports posted

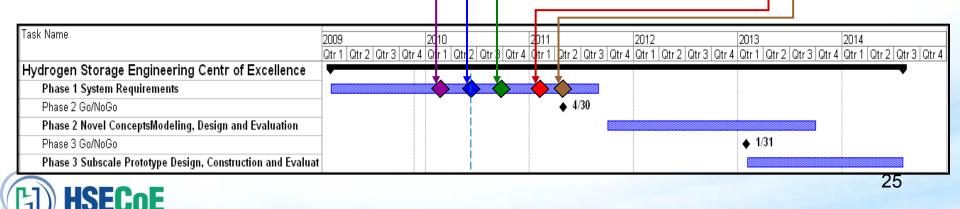
HSECOE


- Coordinating Council meeting minutes posted
- Quarterly updates to Quad Charts posted
- Monthly CC telecoms hosted 1st of every month
- CC Annual Face-to-Face meeting held at H2Storage Tech Team Rev.
- Triennial Face-to-Face meetings held at rotating partners sites

SharePoint Site Initiated

Extra-Center Communications

Future Work – Go/NoGo Preparation


Identify initial system's status vs targets and define technical thrust areas to meet Go/NoGo

Update System Status and define technical approaches to meet Go/NoGo

Assess technical approach progress and impact on targets **◆**

Assess the three condensed hydride types and prospects for future enhancements to meet Technical Targets

Go/NoGo decision to chart future course of HSECoE 🔶

Project Summary

Relevance: Bring ALL of the technologies being studied for hydrogen storage to demonstration

Approach: Model and optimize the necessary hardware required to build hydrogen storage systems, validate models and design and test prototype hydrogen storage systems.

Technical Accomplishments: (i) Assembled available materials data, (ii) identified materials acceptability criteria and envelope, (iii) agreed to common modeling platform and fuel cell automobile architecture, (iv) developed initial system models for each media class, (v) completed initial assessment of each system type and (vi) determined technologies to be developed which will minimize the risk of sub-system demonstrations.

