

Systems Engineering of Chemical Hydride, Pressure Vessel, and Balance of Plant for On-Board Hydrogen Storage

D. Herling, K. Brooks, E. Ronnebro, S. Rassat, K. Simmons, M. Weimar

DOE Fuel Cell Technology Program Annual Merit Review

June 8, 2010 Technology Development Manager: Monterey Gardiner

Pacific Northwest

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project ID: ST005

Overview

Timeline

- Start: Feb. 2009
- Project End: Jan. 2014
 - End Phase 1: 2011
 - End Phase 2: 2013
 - End Phase 3: 2014

Budget

- \$6.2M Total (PNNL) anticipated
 - DOE direct funded
 - No cost-share required for National Lab
- FY09: \$600k
- FY10: \$1.5M

Barriers

- A. System Weight and Volume
- B. System Cost
- C. Efficiency
- D. Durability
- E. Charging/Discharging Rates
- G. Materials of Construction
- H. Balance of Plant (BOP) Components
- J. Thermal Management
- O. Hydrogen Boil-Off
- S. By-Product/Spent Material Removal

Introduction: PNNL Scope in HSECoE

- Roles Supporting Engineering Center Structure
 - Technology Area Lead (TAL) for Materials Operating Requirements
 - Coordinate activities as the Technology Team Lead (TTL)
 - Bulk Materials Handling (Transport Phenomena)
 - Pressure Vessels (Enabling Technologies)
 - Manufacturing and Cost Analysis (Performance Analysis)
 - Liaison to VT Program projects and resources
- Technology Development and System Engineering Tasks
 - Solid Chemical Hydride System Design
 - Process Modeling & Engineering
 - Kinetics & Materials Characterization
 - Microarchitectures Device Development
 - Materials Reactivity & Compatibility
 - Containment and Pressure Vessel Design
 - Manufacturing & Cost Analysis

Relevance: Hydrogen Storage

Impact to FCT Program

- Demonstrate high level of performance that meets DOE 2015 targets using solid chemical hydrogen storage
- Apply materials discoveries and knowledge developed as part of the Materials Centers of Excellence

Hydrogen Storage Community at Large

- Develop and/or advanced modeling and simulation tools for the optimum design and engineering of on-board storage systems
- Functional prototype systems available to OEMs
- Engineering methodologies, analysis tools, and designs applicable to stationary storage and portable power applications
- U.S. demonstration of on-board storage to advance state of the art globally

Pacific Northwe NATIONAL LABORATORY

Approach: Objectives and Deliverables

Technical Objectives of PNNL Scope

- Design of chemical hydride hydrogen storage system & balance of plant (BoP) components
- Reduce system volume and weight and optimize storage capability, fueling, and hydrogen supply performance
- Mitigate materials incompatibility issues associated with hydrogen embrittlement, corrosion, and permeability
- Demonstrate the performance of economical, compact, lightweight vessels for hybridized storage
- Guide design and technology down selection through cost modeling and manufacturing analysis
- Program and annual Deliverables established
- Phased/gated progressions aligning with HSECoE go/nogo decisions

Focus is on Process Engineering, System Design and Functional Integration

Accomplishment: Milestones FY10

Q1 🔵	Task 7	Provide Rev.0 cost model, structure details and spreadsheet to Center partners for their evaluation.
Q2 🔵	Task 1	Complete preliminary design for fuel element transfer system (solids handling coupled to reactor).
Q2 🔵	Task 2	Complete COMSOL modeling of configurations
Q2 🔵	Task 2	Down select systems to be modeled for transient response
Q3 🔵	Task 3	Complete test station for monolithic fuel element and hydrogen release measurement
Q3 🔵	Task 1	Determine functional criteria and design rules based on modeling performance predictions and hydride system needs.
Q3 🔵	Task 2	Complete a conceptual design for a solid chemical hydride reactor that will provide input to the HSECoE's Phase 1 Go/No-go decision making process, and insight into the ability of such a system to meet the 2015 volumetric capacity target of 1.5 kWh/L.
Q3 🔵	Task 3	Determine bulk kinetics measurements and impact on performance.
Q3 🔵	Task 6	Complete modeling and establish pressure vessel design rules for use with prototypes.
Q4	Task 4	Complete assessment on the probability of integrating a heat exchanger within storage vessel.
Q4	Task 5	Complete identification of known materials compatibility issues and establish corrective action plan for component designs.

Chemical Hydride System Status Solid Ammonia-Borane: 2010 Targets

17 Targets Above 40%
4 Targets Undetermined or Below 40% Minimum

NATIONAL LABORATORY

Source: Anton 2010 HSECoE program AMR

Primary Engineering Barriers for Chemical Hydride Systems

- Chemical Hydrides are not 'reacted' in the fuel tank
 - Solids handling engineering key part of any system concept
 - Exothermic reaction of most systems requires different thermal management solutions compared to MH or absorbents
 - AB thermolysis at <100°C; long term storage in hot climates?</p>
- DOE Technical Targets:
 - BoP components and will add to
 - Performance impact of impurities needs a solution
 - Loss of Useable Hydrogen (g/hr)/kg H2 stored: 0.1 (2010) & 0.05 (2015); loss includes venting, if required
- Re-fueling vehicle logistics can be a challenge
- Ammonia Borane foams on reaction potential limitation to practical engineering application

Pacific Northwest

Engineered Form-Factor for Solid AB

- System targets are difficult for granulated materials
- AB foams when it releases hydrogen
 not conducive to engineering
- Antifoaming approaches key
 - More than 50 additive formulations tested with 2-3 successful (CHCoE study)
 - Scaffold materials also demonstrate foam suppression at lower AB:scaffold loadings
 - Paves way for system with monolithic fuel & high volumetric density

Additive suppresses foaming and enables monolithic fuels

Proudly Operated by Battelle Since 1965

Source: PNNL CHCoE

Integrated System Design and Process Modeling for Solid Ammonia Borane

System Modeling Approach

- Ballast Tank
 - Provides H2 for start-up and transients
- No Heat Addition
 - Exothermic reaction heat warms incoming AB
- Issues/Assumptions
 - High heat transfer required between oil and AB in augers (heat/cool)
 - Extrapolation of kinetic data at 160°C to > 500°C
 - Modeling counterflow in Simulink
 - High Pressures in Ballast Tank—need for carbon fiber tank
 - No reaction in heated auger
 - Sticky AB during phase change
 - Impurity Borazine

BoP Equipment Equations/Assumptions

Heated Auger

- Psuedo Counterflow (co-flow section configured in counterflow)
- Transient (includes metal thermal mass)
- Assumes HT Oil \rightarrow Metal \rightarrow AB, No axial conduction

Cooled Auger

- Counterflow Heat Exchanger
- Steady State (NTU-Effectiveness Method)
- Burner
 - Co-Flow
 - Transient (includes metal thermal mass)
 - Assumes HT Gas → Metal → Oil, No axial conduction
- Radiator
 - Cross Flow Heat Exchanger

Example Simulink Component Modeling

Oil Energy Equation

$$\pi \left(R_{in}^{2} - r_{out}^{2} \right) \rho_{oil} C_{p,oil} \left(\frac{\partial T_{oil}}{\partial t} + u_{oil} \frac{\partial T_{oil}}{\partial x} \right) + 2\pi r_{out} h_{oil-metal} \left(T_{oil} - T_{metal} \right) = 0$$

letal Energy Equation

$$\pi \left(r_{out}^{2} - r_{in}^{2} + r_{auger}^{2}\right) \rho_{metal} C_{p,metal} \left(\frac{\partial T_{metal}}{\partial t}\right) + 2\pi r_{out} h_{oil-metal} \left(T_{metal} - T_{oil}\right) \qquad \stackrel{\text{O ilh}}{\underset{\text{BOUT}}{}}$$

AB Energy Equation

$$\pi r_{in}^{2} \rho_{bulk,AB} C_{p,AB} \left(\frac{\partial T_{AB}}{\partial t} + u_{AB} \frac{\partial T_{AB}}{\partial x} \right) + 2\pi r_{in} \varphi h_{metal-AB} \left(T_{AB} - T_{metal} \right) = 0$$

Proudly Operated by Battelle Since 1965

Я

-x = 0

Integrated System Simulation

- Components in the model are coded as 'C' s-functions and simulated in Matlab/Simulink
- Control scheme is based on fuel cell demand and ballast tank states
- Start-Up assumed with 60 kWe power requirement
- Drive Cycle assumed after start-up

Integrated System Simulation

Components in the model are coded as 'C' s-functions

Baseline AB Bead Reactor System

- Developing, refining system concepts
- Intrinsic kinetic models developed
- **Developing reactor sub-models** for use in system model
- Investigate auger / reactor heat transfer coefficients
- Determine "rheology", "stickiness" of reacting AB with and without additives (e.g., using DMA and/or rheometers)

- Main components in the reactor system:
- 2. Ballast Tank & Reactor
- 3. Cold Auger
 - 4. Radiator
 - 5. H₂ Burner
 - 6. Control System

Simulation Results: Start-Up from 20°C

- Constant power 60 kWe
- ► AB begins to react at ~3 min
- Heat of reaction drives ballast tank reaction to maximum
- Reaction in ballast tank very small—will go away
- H_2 burner turns off at ~ 3 min
- Radiator not needed after hot auger, required for H₂ product
- Ballast Tank pressure drops to below 100 atm but rises again to 450 atm set point

Simulation Results: Start-Up from -20°C (cold)

- Constant power 40 kWe
- AB begins to react at ~3.5 min
- Cold AB forces burner on after initial start-up
- Instability needs to be investigated
- Ballast Tank pressure drops to 100 atm but rises again to near 450 atm set point

Simulation Results: Drive Cycle after Warm-Up

- US06 Drive Cycle with 0% Hybridization
- Pressure in Ballast Tank maintained ~ 500 atm
- Heated auger slowly cools at low flows
- H₂ burner turned on intermittently between 380 and 450 sec

System Weight and Volume Estimate

Target: Total Mass 111 kg and Total Volume 178 liters

Component	Weight		Volume	
AB Storage	30.8	kg	0	L
Feed/Product Tanks	14	kg	140	L
Ballast Tank (carbon fiber)	29.7	kg	9	L
Hot Auger (steel)	10.8	kg	3.2	L
Cold Auger (steel)	20.2	kg	6.3	L
Burner/Blower	6.3	kg	5.7	L
Radiator	1	kg	1.8	L
NH ₃ Filter	2.2	kg	2.7	L
Oil Piping/Pump/Tank	4.7	kg	3.5	L
Valves/Actuators	<u>5</u>	kg	<u>3.5</u>	L
Total	125	kg	176	L

Pacific Northwest

Better Engineered Solution

- To address weight/volume constraints, a new design of the bead reactor is proposed
- Kinetics in the augers rather than ballast tank
- Combined Feed and Product Tank
- Better thermal control through multiple heat exchanger loops and through control logic.
- Hot hydrogen heats incoming AB feed

Materials Characterization

Accomplishments

- Materials Centers of Excellence recommended top storage materials
 - Based on multiple criteria
 - Available data and access to materials
- Materials properties of 12 materials posted on HSECoE Share point: MOR/Shared documents/Materials data base
 - Identified materials properties needed for modeling
 - Populated with literature and partner known and validated property data and kinetics
 - Gap analysis completed and plan established to augment data
- Screening criteria/Questionnaire created
 - Material must pass this rough assessment to be further considered
 - Provided to organizations who have a material of interest

HSECoE Materials Categories

	^{Tier 1} Developed Materials	^{Tier 2} Developing Materials	Down-selected Materials
rbents	AX-21	Pt/AC-IRMOF 8	MOF 177
Adsor	MOF 5		
mical rides	$NH_3BH_{3(s)}$	NH ₃ BH _{3(I)}	
Chei Hyd	AIH ₃	LiAIH ₄	
etal rides	NaAlH₄	Mg(NH ₂) ₂ +MgH ₂ +2LiH	MgH ₂
Me Hydi	2LiNH ₂ +MgH ₂	TiCr(Mn)H ₂	Mg₂NiH₄

Developed Materials: System analysis is being performed on up-selected candidates and necessary engineering properties measured

- Developing Materials: Up-selected materials under performance evaluation and materials properties collected and measured if necessary
- Down-selected materials: Materials found to not improve system performance relative to up-selected materials, and thus not for further consideration

Storage Material Screening Criteria

Capacity (wt% n ₂ and kg n ₂ /L) as measured at what pressure (bar) and temperature (C) Chemical formula and decomposition reaction formula Chemical formula and decomposition reaction formula	
Absorption: give tempe	
Capacity (wt% H ₂ and kg H ₂ /L) as measured at what temperature (°C)	
Desorption: give tempe Material and Synthetic Process Adsorbents	
Desorption: give temperature (°C)	
Enthalpy, ΔH (J/mol): to Capacity as independently validated maximum Gibbs excess capacity (wt% H ₂ and kgH ₂ /L) as measured at what pressure (bar) and temperature (°C). Provide isotherms at RT and 77K.	
Crystal density (g/cm ³)	
Crystal density (g/cm ³)	
Cost raw material + add Hydrogen uptake: give temperature (°C), pressure (bar) and rate (g H ₂ /s) to reach max adsorption capacity	
Cost for raw material (precursor) (
Availability (g) BET Specific surface area (m ² /g) and pore size distribution and/or bulk density (g/cm ³)	
Availability (g)	
Cost for raw material (precursor) and estimate for processing (\$/g)	
Availability (g) Pacific Northwee NATIONAL LABOR	est Ratory

	Questionnaire applied to LiNH ₂ :MgH ₂ 1:1		
Stora	Chemical formula and reversible reaction formula $LiNH_2 + MgH_2 = LiMgN + 2H_2 etc$		
Chemical formula and reversible	Capacity (wt% H ₂ and kg H ₂ /L) as measured at what pressure (bar) and temperature]	
Capacity (wt% H ₂ and kg H ₂ /L) a	(C) and cycle life (# of abs/des cycles and % capacity loss) 7.9wt% H2 adsorbed at ?C and ? bar; 5 cycles	J	
Absorption: give tempe	Absorption at RT-250 C at 1-700 bar: give temperature (C), pressure (bar) and rate (g H_2 /s) to reach max absorption capacity ?? Data not yet in data base, but in literature		
Desorption: give tempe	Desorption at 80-250 C at 1-3 bar: give temperature (C), pressure (bar) and rate (g	rbents	
Enthalpy, ΔH (J/mol): fo	H_2/s) to reach max desorption capacity ?? Data not yet in data base, but in literature		
Crystal density (g/cm ³)	Enthalpy, ΔH (J/mol) <50kJ/mol: for formation and/or reaction 33.5kJ/mol		
Cost raw material + add			
Availability (g)	Crystal density (g/cm ³) 2.388mg/m ³		
Avail:	Cost raw material + additive (\$/g)		
	Availability (g)		

Example: Data Base for Sodium Alanate

Category	Property	reported value re	eference
	Composition	NaAlH ₄ +2m%TiCl ₃ +0.33m%AlCl ₃ +0.5m%FeCl ₃	
	Catalyst	2m%TiCl ₃ +0.33m%AlCl ₃ +0.5m%FeCl ₃	
		$NaAlH_4$: 86.3% $NaAlH_4$, 4.7% Na_3AlH_6 , 7.5% free	Mosher et al. UTRC Final Report
	Impurities/Ratios	Al and 10.1% insoluble Al (in wt%).	(2007)
Synthesis	Method	SPEX ball milling under nitrogen for 6 hours	Mosher et al. UTRC Final Report (2007)
Decomposition Pathways		$NaAlH_4 \Leftrightarrow \frac{1}{3}Na_3AlH_6 + \frac{2}{3}Al + H_2 \Leftrightarrow NaH + Al + \frac{3}{2}$	$\frac{1}{2}$ H ₂ huwalia, R.K. (2007) Inter J of Hydro Energy 32
	Intermediates	57.1 mol% NaH 42.9 mol% Al	Sriniyasan 377(2004)283
	inter incurates	35.3 mol% NaH. 54.6 mil% Al. 8.7% Na ₂ AlH ₄ .	51111745411 577 (2001)205
		1.3% NaCl	Srinivasan 377(2004)283
	Hydrogen		
	Impurities	None	
Intrinsic properties	Kinetic Model	$\left(\frac{dC_j}{dt}\right)_{r_i} = D_i \exp\left(-\frac{E_i}{RT}\right) * \left(\frac{P_{e,i} - P}{P_{e,i}}\right) * (C_k)^{\chi}$	^{<i>i</i>} Mosher et al. UTRC Final Report (2007)
	D	Needs to be calculated	
	E	Needs to be calculated	
	P _e ,	Needs to be calculated	
	χ	Needs to be calculated	

Pacific Northwest NATIONAL LABORATORY

Example: Data Base for Sodium Alanate

Summary & Proposed Future Work

Collaborative Activities

Hydrogen Storage Engineering Center of Excellence	 Lincoln Composites - study of CF cost and pressure vessel design modeling GM - design of structured media bed for MH Ford - characterization of absorbent materials UQTR - design and materials characterization of carbon absorbent OSU - microarchetecture device concept development and thermodynamic analysis UTRC - develop solutions for H₂ impurities filtering LANL - AB system design and measure H₂ impurities NREL - input for tank to wheels analysis and system cost models SRNL - study AB reactivity and kinetics model development
SAWGG	Participate in group discussions and analysis
Materials 'Reactivity' Program	 Khalil (UTRC) and Anton (SRNL) - understand reactivity properties of AB Van Hassel (UTRC) - study impurities in H₂
Independent Analysis	 TIAX - provide design details for AB refueling cost and feasibility assessment, plus share cost parameters for system cost modeling

Summary of Accomplishments

- A representative systems model of a AB based bead reactor system was developed and successfully simulated in Matlab/Simulink environment.
- A COMSOL transport model was developed for a bead and a block system. The heat and mass transfer model used a simple reaction rate expression: (1) Bead reaction can occur within the auger that has been designed assuming a 200°C wall. (2) Heating the outside surface of a block can light off the reaction for the entire block.
- An improved kinetic model has been developed and implemented into the system model.
- Hydrogen loss and impurities assessed for solid AB as material is moved into and out of the pressurized reaction system.

Summary of Accomplishments (con't)

- Materials properties database established for HSECoE partners
- Screening criteria/Questionnaire created
- Engineering cost model structure established
- Studies and analysis of pressure vessels performed:
 - Metal hydride hybrid
 - Vessel material of construction sensitivity analysis
 - Liner material assessment
- Materials compatibility and reactivity studies started

Future Work: Chemical Hydride System Design

- Future work includes implementation of the new bead reactor design in Matlab/Simulink and corresponding simulation analysis
 - Improve H2 Delivery Temperature
 - Increase Volumetric/Gravimetric Density
 - Include variable transport properties (ρ, Cp, k, zH2)
 - Address impurities and hydrogen losses in design
- Investigation of alternate materials for chemical hydride hydrogen storage.
- Implementation of the new kinetic model in Matlab/Simulink and corresponding simulation analysis
- Include temperature dependent transport properties into models as they become available. Modify kinetic model with higher temperature experimental data.

Pacific Northwest

Future Systems to be Evaluated

- Materials to be Studied
 - Ammonia Borane (NH₃BH_{3 (s)}) (Starting Material)
 - Alane (AlH₃)
 - Lithium Aluminum Hydride (LiAlH₄)
- Other System Configurations

Future Work

- Complete system concept modeling efforts and provide initial component design for partner review
- Determine final reactor details and lock-in design
- Complete bulk kinetics modeling and validation studies
- Initiate heat exchanger modeling effort and provide initial component design for partner review
- Progression of cost model with system details and integrate component "catalog"
- Storage material bulk characterization

Darrell Herling – Pacific Northwest National Lab, Principal Investigator darrell.herling@pnl.gov, (509) 375-6905

Don Anton – HSECoE, Director Monterey Gardiner – DOE EERE, Technology Development Manager

