Advancement of Systems Designs and Key Engineering Technologies for Materials Based Hydrogen Storage

Bart A. van Hassel, D. Mosher, J.M. Pasini, M. Gorbounov, J. Holowczak, S. Hay, J. Khalil, F. Sun, X. Tang and R. Brown United Technologies Research Center

Annual Merit Review Washington, DC June 8, 2010

Project ID: ST006

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start: February 2009
- End Phase 1: July 2011
- End Phase 2: July 2013
- End Phase 3 / Project: July 2014
- Percent complete: 18.0% (spending)

Budget

- \$6.86M Total Program
 - \$5.32M DOE
 - \$1.55M (22.5%) UTRC
- FY09: \$350k DOE
- FY10: \$870k DOE

Barriers*

- A J
- A. System Weight & Volume
- E. Charging / Discharging Rates
- J. Thermal Management
- Targets*
 - All

HSECoE Partners

Objectives

- Design of materials based vehicular hydrogen storage systems that will allow for a driving range of greater than 300 miles
- H₂ storage system focus:
 - Metal hydride
 - Chemical hydride
 - H₂ cryo-sorption materials

Target examples:

Performance Measure	Units	2010	2015	Ultimate
System Gravimetric Capacity	g H ₂ /kg system	45	55	75
System Volumetric Capacity	g H ₂ /L system	28	40	70
System fill time (for 5 kg H ₂)	minutes	4.2	3.3	2.5
Fuel Purity	% H ₂	SAE J2719 guid	deline (99.97	% dry basis)

Approach

 Leverage in-house expertise in various engineering disciplines and prior experience with metal hydride system prototyping to advance materials based H₂ storage for automotive applications

Material

Properties and Kinetics

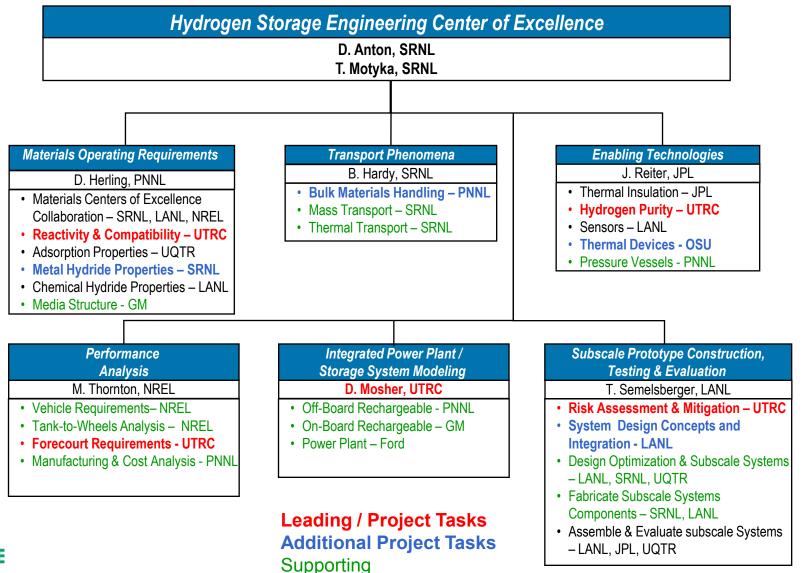
System Safety:
Modeling and Development Advanced HX/bed Model Development HX/bed Design H₂ Purity

Material

Transport

Month/Year	Go/No-Go Decision
Apr-11	Provide a system model for each material sub-class (metal hydrides, adsorption, chemical storage) which shows:
	4 of the DOE 2010 system storage targets are fully met
	Status of the remaining targets must be at least 40% of the target or higher

Material

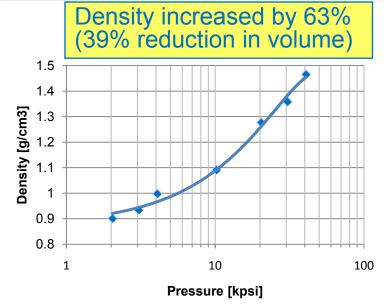

Compaction

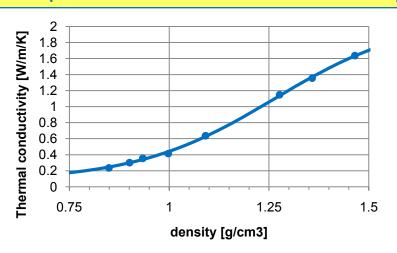
Vehicle

Center Structure – Roles & Collaborations

Engineered Compaction

- Objective: Improve volumetric capacity and thermal conductivity through powder compaction
- Coordinated through GM


Press inside glovebox


Pellets for thermal Conductivity measurements

Thermal conductivity analyzer

7X improvement of thermal conductivity

Properties of Compacted Metal Hydride

System Safety.

Modeling and Resissment

HX-bed Model Resissment

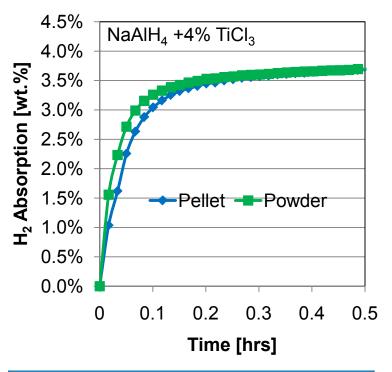
HX-bed Model Resissment

HX-bed Model Resissment

HX-bed Model Resissment

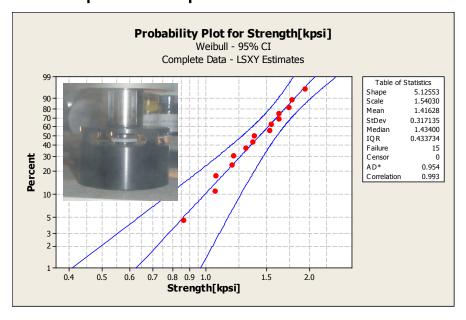
Material

Material


Properties and Kinetics

Compaction

Material


Transport

H₂ Absorption (120°C, 110 bar)

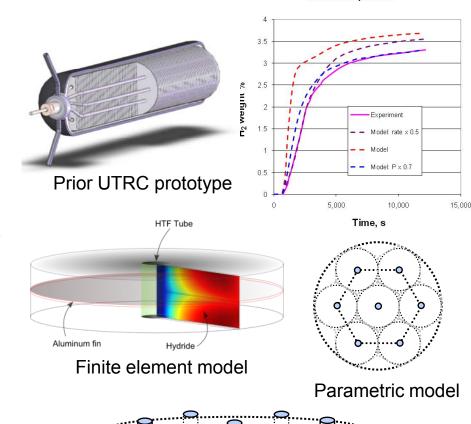
Comparable H₂ absorption and desorption rate before and after compaction

 Biaxial flexure screening test for compressed pellets

Reinforced NaAlH₄

Integrating pellet reinforcement and thermal conductivity enhancement in compacted material

Storage System Model and HX Development

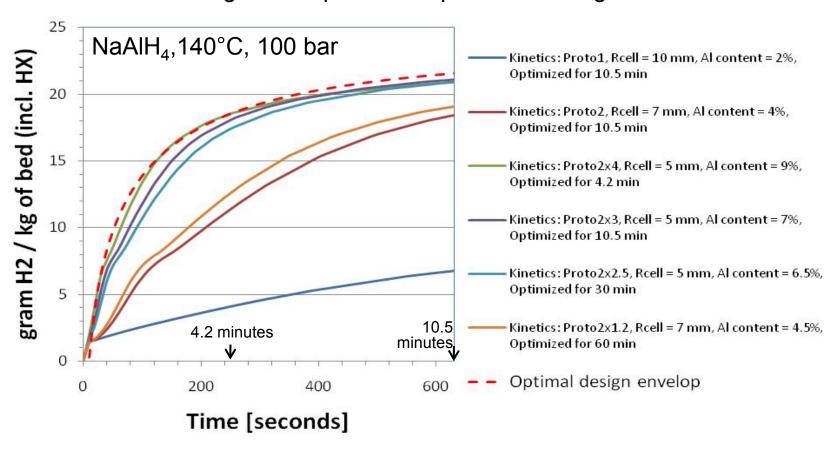

Material

model vs. experiment

 Objective: Optimization of hydrogen storage system heat exchanger for fast refueling time

Approach:

- Co-developed and validated COMSOL™ model of NaAlH₄ bed with SRNL
- Incorporated improved material properties after compaction (ρ, k)
- Performed parametric study to optimize heat exchanger design for fast refueling time
- Developed lumped parameter model for System Level Modeling



HX Design for Fast Refueling Time

Modeling and Risky
Development Assessment

HX/bed Model
HX/bed Model
HX/bed Design
Material
Properties and Kinetics
Compaction
Material
Transport

Different bed designs are optimal for specific refueling times

NaAlH₄ is a good model material for designing engineering tools but can not achieve gravimetric capacity targets at fast refueling times

H₂ Purity

Vability

Vability

Nodeling and Risk

Development Assessment

HX/bed Model A Assessment

HX/bed Model A Assessment

HX/bed Model A Assessment

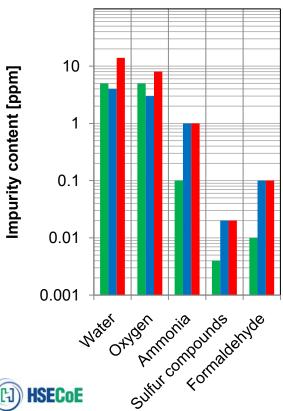
HX/bed Design

Material

Properties and Kinetics

Material

Compaction


Material

Transport

 Objective: Develop system methods to improve discharged hydrogen purity / quality for acceptable PEM fuel cell durability

Impurities of Concern:

NREL H₂ Forecourt

■ SAE International guideline (ppm)

NREL data 2007Q3- 2008Q2 (ppm)

NREL data 2008Q3- 2009Q2 (ppm)

Based on HSECoE Tier 1 & 2 Materials

Storage material	Impurity	SAE guideline	HSECoE Estimate
Ammonia Borane	Borazine	???	0.4-3.0%*
	Diborane	???	1-5 ppm
	Ammonia	0.1 ppm	20-200 ppm
Metal Amides	Ammonia	0.1 ppm	200-800 ppm

*LANL: 0.01-0.08 mol Borazine/ mole of AB reacted

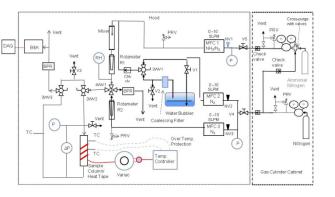
Initial focus on Ammonia

Preliminary Purification System Comparison

Mode	System Safety: ling and Risk lopment Assessm		ment	
HX/bed Model Development		anced d Design	H ₂ Purity	
Material Properties and Kinetics	Material Compaction		Material Transport	

Factor	Conventional Palladium Membrane	Regenerable Physical Adsorption	Chemical Adsorption
Weight	Heavy	Heavy ¹⁾	Light
Volume	Big	Big	Small
Cost	Expensive	Affordable	Affordable
H ₂ loss	2-5%	High ¹⁾	Low
Pressure	>50 psig	High pressure preferred	Atmospheric or high pressure
Temperature	300-400°C	RT	RT <t<150°c< th=""></t<150°c<>
Purity	99.999999%	99.97%	99.97%
Life expectancy	>5 years	>2 years	3 month replacement

¹⁾ Assuming on-board regeneration



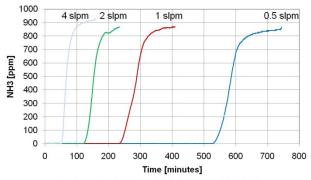
Chemical adsorption cartridge selected for Ammonia

Adsorption System Development

Process Flow Diagram

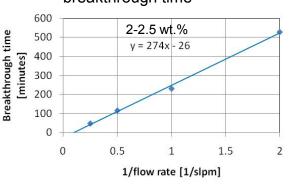
Test apparatus

NH₃ adsorbent

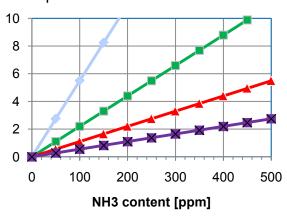

- Mesh size: 20x30 mesh (0.84x0.60 mm)
- Tap Density: 0.673 g/cm³
- BET surface area: 673 m²/g
- Pore volume: 0.338 cm³/g

Sorbent amount [kg]

Average Pore Diameter (4V/A by BET): 20.1 Å



NH₃ breakthrough curves


7.5 g, bed height: 12 cm, Inlet: 1000 ppm $\mathrm{NH_3}$ in $\mathrm{N_2}$

Flow rate dependence NH₃ breakthrough time

Adsorbent based H₂ purification cartridge for NH₃ appears viable

Cartridge weight for 3-month replacement interval

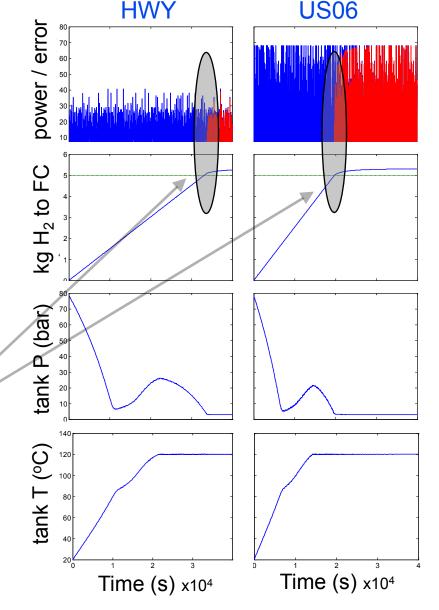
Integrated Framework for Vehicle Simulation

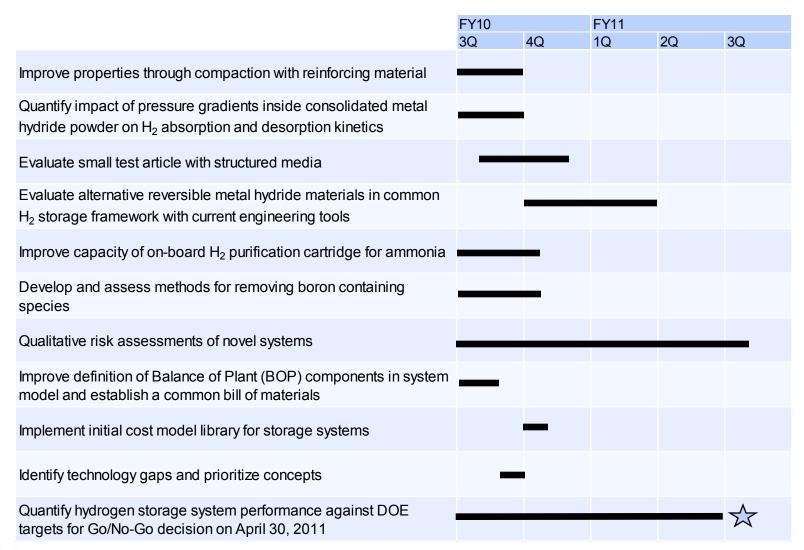
| Value | Valu

 Objective: Evaluate combined power plant / storage system configurations to determine hydrogen storage system requirements and predict overall performance

Progress: System Results for comparison with Framework structure DOE targets H₂ Storage Systems developed and implemented in Simulink™ UTRC NaAIH System performance → H₂ stream in Drive Cycle Different storage system → H₂ request H₂ steam out H₂ requested Power request Power types coexist within same to fuel cell requested GM NaAlH₄ Power framework Power achieved achieved GM H₂ cryo Results generated for Adsorbent (AX-21) comparing storage systems Vehicle level model **Fuel Cell System** PNNL (Ford) Chemical Hydride (NREL) against DOE targets on a (solid AB) common basis Vehicle Parameter Fuel Cell Inputs Storage systems

UTRC leading IPP/SSM technical area and providing support to all partners for implementing their contributions


Integrated Framework for Vehicle Simulation


NaAlH₄ system example:

- Power demand curves from HSSIM (NREL)
- Lumped heat transfer model parameters from COMSOL™ model of NaAlH₄ bed
- Single "cold start" from 20°C:
 - H₂ stored in free volume is burned to raise temperature
- Drive cycle repeats indefinitely
 - Drive cycles were not designed for vehicles with materials based H₂ storage systems
- Minimum delivery pressure: P_{min}= 3 bar
- Results show drive cycle is tracked correctly until after 5kg H₂ have been delivered to the fuel cell.
- More details in presentation by GM

Performance comparison of all three hydrogen storage systems on a common basis

FY10 and FY11 Plan

Summary

Relevance: Design of materials based vehicular hydrogen storage systems that

will allow for a driving range of greater than 300 miles

Approach: Leverage in-house expertise in various engineering disciplines and

prior experience with metal hydride system prototyping to advance

materials based H₂ storage for automotive applications

Technical Accomplishments and Progress:

 Developed method that improved volumetric capacity and thermal conductivity through compaction

- NaAlH₄ is a good model materials but can not achieve gravimetric capacity targets at fast refueling times
- Hydrogen purification cartridge for adsorbing NH₃ appears viable
- Established Simulink™ framework that enables performance comparison of all three hydrogen storage materials against DOE targets on a common basis

Collaboration: Active collaboration with all partners in center, for instance between

Ford, GM, PNNL and NREL on system level modeling

Future Work: Work towards milestones on quad charts of each of the technical

areas and technical teams and towards Go/No-Go decision on April

30, 2011

Acknowledgements

Acknowledgement: This material is based upon work supported by the U.S. Department of Energy under Contract No. DE-FC36-09GO19006.

Disclaimer: This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government of any agency thereof.

