

Chemical Hydride Rate Modeling, Validation, and System Demonstration

LANL Team

T.A. Semelsberger (P.I.), Eric Brosha, Jose Tafoya, Gerie Purdy, Tessui Nakagawa, and Ben Davis

DOE Fuel Cell Technologies Program Annual Merit Review, EERE: Hydrogen, Fuel Cells and Infrastructure Technologies Program Washington, DC June 07-11, 2010 Technology Development Manager : Monterey Gardiner

This presentation does not contain any proprietary, confidential, or otherwise restricted information

UNCLASSIFIED

Project ID: ST007

Introduction and Project Approach

Los Alamos National Laboratory's Chemical Hydride Rate Modeling, Validation, and System Demonstration Project is a newly funded DOE project under the Hydrogen Storage Engineering Center of Excellence led by Savannah River National Laboratory (SRNL). The scope of work for the Hydrogen Storage Engineering Center of Excellence are:

- Systems engineering for hydrogen storage systems for vehicular applications
- Energy management. Understand impact on subsystems of required heat and/or mass transport
- Novel component & reactor designs. Stress conformable designs that are compact and light-weight
- Concept evaluation & sub-scale prototype testing

In support of the goals and objectives of the Hydrogen Storage Engineering Center Excellence (HSECOE), Los Alamos National Laboratory will contribute to modeling, designing, fabricating, and testing a prototype hydrogen release reactor for a hydrogen storage system based on chemical hydrides. Through these efforts, we will solve the critical issues for implementation of chemical hydrides in a hydrogen storage system and develop two key enabling technologies for other hydrogen storage system types.

Los Alamos National Laboratory work scope includes:

- Develop fuel gauge sensors for hydrogen storage media
- Develop models of the aging characteristics of hydrogen storage materials
- Develop rate expressions of hydrogen release for chemical hydrides
- Develop novel reactor designs for start-up and transient operation for chemical hydrides
- Identify hydrogen impurities and develop novel impurity mitigation strategies
- Design, build, and demonstrate a subscale prototype reactor using liquid or slurry phase chemical hydrides

LANL Project Overview

<u>Timeline</u>

- Project Start Date: Feb FY09
- Project End Date: FY14
- Percent Complete: 25%

Budget

- •Project End Date: FY14
- Funding:
 - •2009: \$578K
 - •2010: \$712K

Barriers

- Barriers Addressed
 - Efficiency
 - Gravimetric Capacity
 - Volumetric Capacity
 - Durability/Operability
 - *H*₂ Discharging Rates
 Start time to full flow
 Transient Response
 - H₂ Purity
 - Environmental, Health & Safety

Project Timeline

Phase 1									Phase 2							Phase 3					
2009 2010 2011					2011 2012					2013				2014							
Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	

HSECoE Partners

UNCLASSIFIED

EST.1943

LANL Project Objectives, Project Milestones & Project Go/No-Go Decision Points

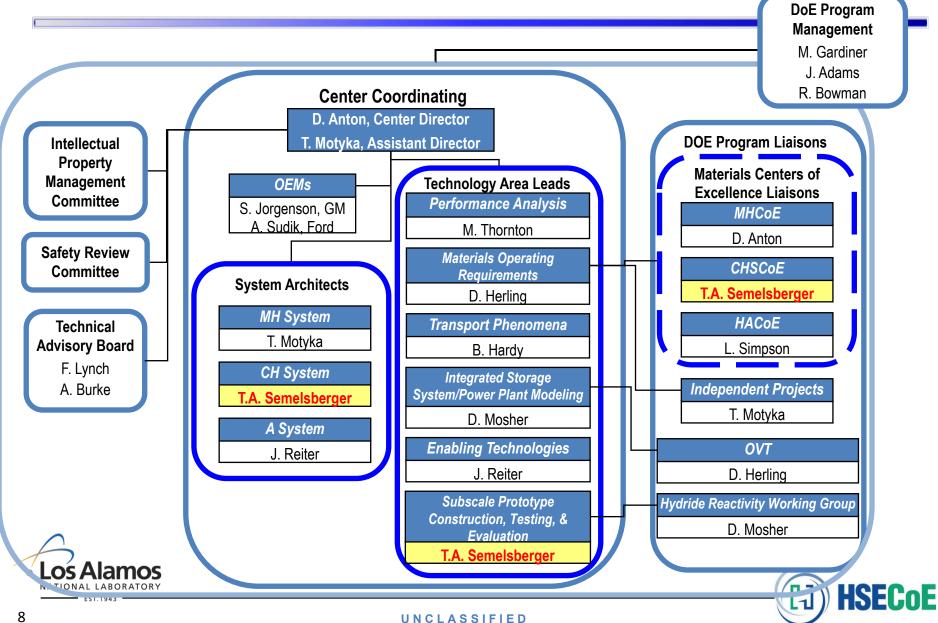
			FY09	Pha	ise 1	FY10			FY11	Phase 2	-	Y12	Phase 3	FY13
Objectives and Tasks	Q1			Q4	Q1		3 Q4	Q1		Q3 Q4	Q1 Q2		Q1 Q2	
Objective 1: To Act as the Chemical Hydrogen Storage Center of Excellence (CHSCoE) Liaison		-			•						•			
TASK 1.1: Identify and compile engineering modeling data for chemical hydrides		:	:	:	:	D4	:			013	D18	:	:	
TASK 1.2: Provide testing protocols to CHSCoE		÷	÷			Đ	6	:	÷	:			:	÷ ÷
TASK 1.3: Identify media risks and mitigation strategies	1	÷		÷	:		D7				D19		:	
Objective 2: Develop Fuel Gauge Sensors for Hydrogen Storage Media					-									
TASK 2.1: Identfiy first generation fuel gauge sensors		:	:	: D1	:	:	: G1	:		:	:	: :	:	: :
TASK 2.2: Develop and demonstrate fuel gauge sensors		-	÷	÷				M2			D20			
Objective 3: Mathmatically Model the Aging Characteristics of Candidate Hydrogen Storage Media														
TASK 3.1: Develop models to predict shelf-lives		:	:	:	:	:	:	M3 :	:	:	: D21		:	: :
TASK 3.2: Provide accelerated aging testing protocols for shelf-life modeling to the HSMCoE				D2			D8						:	: :
Objective 4: Develop Rate Models for Hydrogen Release on Candidate Chemical Hydrides				_			_			_				
TASK 4.1: Identify operating temperatures and hydrogen release rates			:	: D3	:		:	:	:			: :		
TASK 4.2: Collect kinetics data from CHSCoE and develop catalytic reaction rate models				-		D5	1	:				: :		÷ ÷
TASK 4.3: Model reactors with release kinetics coupled with mass and heat transfer effects	1	:	:	:	:		. M1			: D14			1	÷ ÷
TASK 4.4: Provide feedback to CHSCoE with strategies on catalyst optimization and design		:	:				D9			D15		: :		
Objective 5: Develop Novel Strategies for Start-Up and Transient Operation with Candidate Chemical Hydrides	s			-										
TASK 5.1: Identify reaction coupling schemes that minimize reactor start-up times and maximizing		:		:	:	:	• D10	:	:	:	:	: :	:	: :
energy efficiency TASK 5.2: Examine transient effects on reactor turn-down	-	÷		:	÷	÷	:			M5	D22			÷ ÷
Objective 6: Identify Hydrogen Impurities and Develop Novel Impurity Mitigation Strategies	<u> </u>	· · ·		•	· ·	•				WIJ	DZZ	· · ·	· · ·	<u> </u>
TASK 6.1: Identify impurities demonstrating fuel cell degradation	—			•		•	. D11					: :	 : 	: :
TASK 6.2: Determine adsorbate-adsorbent interactions	-	÷		:	:	÷	:			D16		÷ ÷	1	÷ ÷
TASK 6.3: Quantify and model hydrogen impurities demonstrating fuel cell degradation	-		:	:			D12			: D17		: :	1	: :
TASK 6.4: Identify novel impurity separation strategies	-	÷	÷	÷	:	÷	: 012	M4		G2	D23		1	÷ ÷
DOE CENTER-WIDE GO/NO-GO	-	:	:	:	:	:	:	1014		: G3			:	: :
Objective 7: Design, Build, and Demonstrate a Subscale Prototype Reactor that Releases Hydrogen using	-	•	· · · · · ·								<u> </u>	<u></u>	<u> </u>	<u> </u>
Chemical Hydrides TASK 7.1: Coordinate risk assessment and mitigation strategies for demonstration	—			:			:	<u> </u>				: D27		<u> </u>
TASK 7.2: Coordinate the integration of the relevant design concepts into the prototype design	1	÷	÷	÷		÷		i		M6	D24 G4		1	: :
TASK 7.3: Coordinate the development of a logistics plan for testing and evaluating prototypes	1	:	:	:	:	:	:	:			:	D25	:	: :
TASK 7.4: Coordinate the development of decomissioning plans for subscale prototypes	1	÷	÷	÷		÷	÷					D26	:	÷ ÷
TASK 7.5: Scale and design an optimized chemical hydride prototype	1	:	:	:	:		÷	:	:	:	M7 :	:	D28	: :
TASK 7.6: Fabricate subscale system components for chemical hydride prototype	1	÷	÷								:	M8		÷ ÷
TASK 7.7: Build subscale chemical hydride test bed station	1	:	:	:	:	:	:	:	:	:	:	M9	D29	
TASK 7.8: Assemble and evaluate subcale chemical hydride protoype	1	÷	÷	÷		÷	÷			÷	:		M10	D
ASK 7.9: Coordinate the decommissioning of all subscale prototypes	1	:	÷	:		:	:	:		:				D

EST.1943

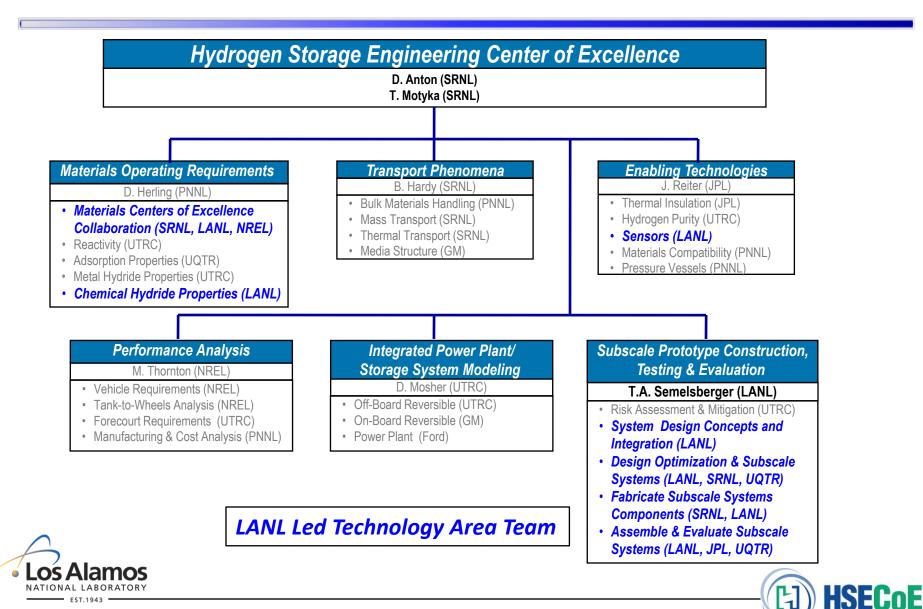
LANL Project Deliverables

Phase	Deliverable	Description	Delivery to	Date
	D1	First generation fuel gauge sensor (DEMONSTRATED)	DOE	Q4 FY09
	D2	Testing protocols for shelf-life data acquisition (COMPLETED)	CHSCoE	Q4 FY09
	D3	Identify the operating conditions for rate data collection (COMPLETED)	CHSCoE	Q4 FY09
	D4	Identify & compile engineering data for chemical hydrides (IN PROGRESS)	DOE & ECoE	Q2 FY10
	D5	Collate rate data collected by the CHSCoE and develop rate model (IN PROGRESS)	ECoE	Q2 FY10
e 1	D6	Provide testing protocols to CHSCoE (IN PROGRESS)	CHSCoE	Q3 FY10
Phase 1	D7	Identify & compile chemical hydride media risks and mitigation strategies (IN PROGRESS)	DOE & ECoE	Q4 FY10
–	D8	Update testing protocols for shelf-life data acquisition (as needed) (IN PROGRESS)	CHSCoE	Q4 FY10
	D9	Provide feedback to CHSCoE on potential catalyst optimization strategies (IN PROGRESS)	CHSCoE	Q4 FY10
	D10	Reaction coupling schemes addressing start-up and transient operation (IN PROGRESS)	CHSCoE, ECoE, & DOE	Q4 FY10
	D11	Identify fuel cell impurities (IN PROGRESS)	DOE, HSMCoE, & ECoE	Q4 FY10
	D12	Quantify minimum fuel-cell impurity level for safe operation	DOE & ECoE	Q4 FY10
	D13	Update engineering data for chemical hydrides (as needed)	DOE & ECoE	Q3 FY11
	D14	Rate model for chemical hydride hydrogen release	DOE & ECoE	Q4 FY11
	D15	Provide update to CHSCoE on potential catalyst optimization strategies	CHSCoE	Q4 FY11
	D16	Determine fuel cell degradation via impurities	DOE & ECoE	Q4 FY11
	D17	Update on minimum fuel-cell impurity level for safe operation	DOE & ECoE	Q4 FY11
Phase 2	D18	Update engineering data for chemical hydrides (as needed)	DOE & ECoE	Q2 FY12
has	D19	Update chemical hydride media risks and mitigation strategies	DOE & ECoE	Q2 FY12
-	D20	Working fuel gauge sensor capable of monitoring H2 levels within +/- 5%	DOE & ECoE	Q2 FY12
	D21	Shelf-life models for candidate hydrogen storage media	DOE & ECoE	Q2 FY12
	D22	Report on transient operation of novel reaction coupling schemes	DOE & ECoE	Q2 FY12
	D23	Working Impurity mitigation device with low cost, low volume & low mass	DOE & ECoE	Q2 FY12
	D24	Final prototype designs for all media types	DOE & ECoE	Q2 FY12
	D25	Logistics plan for testing and evaluating subscale prototypes	DOE & ECoE	Q3 FY12
	D26	Decommissioning plans for SRNL, JPL, & LANL	DOE & ECoE	Q3 FY12
3	D27	Report on all known risks and mitigation strategies for prototype demonstrations	DOE & ECoE	Q4 FY12
Phase	D28	Final scaled design of all prototypes	DOE & ECoE	Q1 FY13
Рһ	D29	Test bed proper for demonstrating subscale prototype	DOE & ECoE	Q2 FY13
	D30	Final assembly and evaluation of subscale prototypes	DOE & ECoE	Q4 FY13
	D31	Prototype decommissioning	DOE & ECoE	Q4 FY13

LANL Project Milestones and Go/No-Go Decisions


Phase	Milestone	Description	Dependencies	Date
Phase 1	M1	Reactor model with release kinetics coupled with heat and mass (IN PROGRESS)	TASKS 4.1 and 4.2	Q4 FY10
	M2	Fuel gauge sensor development and demonstration	TASK 2.1	Q1 FY11
	M3	Shelf-life model development	TASK 3.2	Q1 FY11
Disco	M4	Impurity mitigation strategiy development	TASKS 6.1 and 6.3	Q1 FY11
Phase 2	M5	Examination of transient effects on reactor turn-down	TASK 5.1	Q3 FY11
	M6	Integration of most promising design concepts in subscale prototypes	ECoE TASKS	Q3 FY11
	M7	Scale and design chemical hydride prototype system proper	TASK 7.2	Q1 FY12
	M8	Fabricate subscale system components	TASK 7.5	Q3 FY12
Phase 3	M9	Build subscale chemical hydrided test bed station	TASK 7.6	Q4 FY12
	M10	Assemble and evaluate subscale chemical hydride prototype	TASK 7.7	Q1 FY13

Phase	Go/No-Go	Description	Criteria*	Date							
Phase 1	G1	Go/No-Go Decision on fuel gauge sensor (On Track)	+/- 5% of H ₂ Stored	Q4 FY10							
	G2	Go/No-Go Decision on viable impurity mitigation/separation strategies	mass, volume, cost	Q4 FY11							
Phase 2	G3	DOE Center-Wide Go/No-Go for Continuing to Phase 3	volume, cost, mass	Q4 FY11							
	G4	Go/No-Go decisions on integrated design concepts for each prototype	efficiency, mass, volume, cost	Q2 FY12							
* all	* all Go/No-Go decisions will be based on the most current DOE Technical Targets; the components or designs that most favorably compare to the DOE Technical Targets will be chosen										



Overall Structure of HSECoE

HSECoE Technology Areas (TAs)

LANL Management Tasks in Support of HSECoE

Technology Area Leader (TAL) for the Subscale Prototype Construction, Testing, & Evaluation Technology Area

Technology Area Team Lead for:

- Chemical Hydride Properties
- Sensors
- System Design Concepts and Integration
- Design and Optimize Subscale Prototype
- Fabricate Subscale System Component
- Assemble and Demonstrate Subscale Prototypes
- > **DOE Program Liaison** to the Chemical Hydrogen Storage Center of Excellence (CHSCoE)

Chemical Hydride System Architect

• Monitor progress on chemical hydrides technology across the technology areas to be sure all needed features are being advanced and that needed communication across groups and areas is occurring

• Continually assess system for 4/40 Go/No-Go status and with the expertise of the TALs, assure that their system minimally meets requirements

• Continually assess system for 6/50 Go/No-Go status and with the expertise of the TALs, assure that their system minimally meets requirements

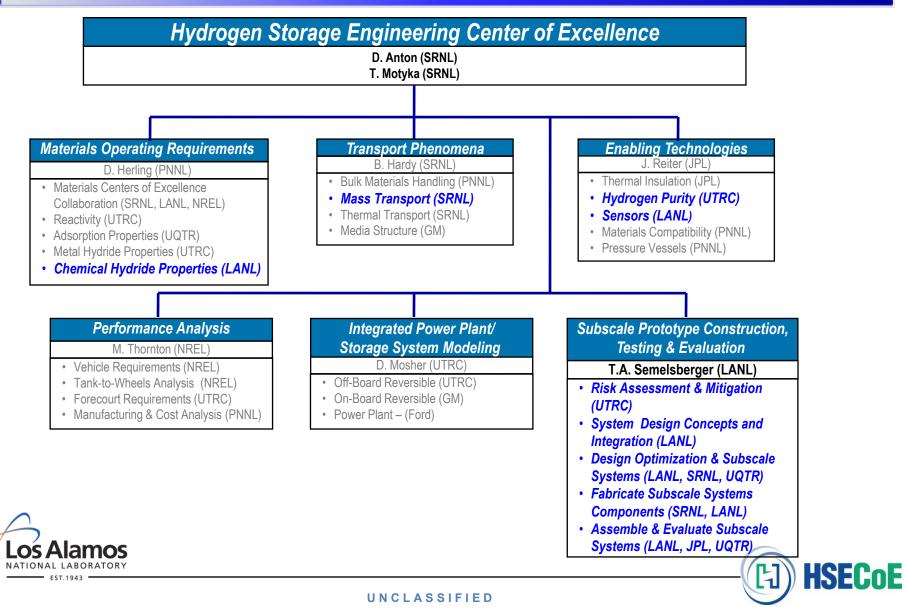
LANL Management Accomplishments/Highlights

Technology Area Team Lead for:

- Chemical Hydride Properties: Gathered pertinent thermo-physical properties and identified missing property data for chemical hydrides and identified institution for quantifying necessary data
- Sensors: Developed a first generation fuel gauge sensor
- System Design Concepts and Integration: Delivered preliminary design concepts
 - Solid chemical hydride
 - Liquid phase chemical hydride
- DOE Program Liaison to the Chemical Hydrogen Storage Center of Excellence (CHSCoE): Coordinated/collaborated with CHSCoE on the status of state-of-the-art chemical hydride materials

Chemical Hydride System Architect

✓ Monitored progress on chemical hydrides technology across the technology areas for needed features to be advanced and to insure needed communication across groups and areas occurs


✓ Assessed system for 4/40 Go/No-Go status:

- Assessment performed on solid AB
- Beginning assessment on liquid AB

LANL Primary Technical Contribution Areas

LANL Engineering Tasks in Support of HSECoE

LANL Engineering Tasks

- <u>Task 2:</u> Develop Fuel Gauge Sensors for Hydrogen Storage Media (Ahead of Schedule)
- Task 3: Develop Models of the Aging Characteristics of Hydrogen Storage Materials (*On Schedule*)
- Task 4: Develop Rate Expressions of Hydrogen Release for Chemical Hydrides (Behind Schedule)
- <u>Task 5:</u> Develop Novel Reactor Designs for Start-up and Transient Operation for Chemical Hydrides (*On Schedule*)
- <u>Task 6:</u> Identify Hydrogen Impurities and Develop Novel Impurity Mitigation Strategies (*Ahead of Schedule*)
- Task 7: Design, Build, and Demonstrate a Subscale Prototype Reactor Using Liquid or Slurry Phase Chemical Hydrides (*On Schedule*)

Task 2: LANL Fuel Gauge Sensor Development

✓ <u>Relevance</u>:

•DOE Targets Addressed: N/A

•All commercialized vehicles necessitate a fuel gauge sensor

✓ Expected Outcomes:

•Fuel gauge sensor for solid- and slurry-phase hydrogen storage media

✓ <u>Tasks:</u>

- 2.1 Identify first generation fuel gauge sensors
- 2.2 Demonstrate fuel gauge sensor technology on candidate hydrogen storage media

	Phase	Deliverable	Description	Delivery to	Date
Deliverables	Phase 1	D1	First generation fuel gauge sensor (DEMONSTRATED)	DOE	Q4 FY09
	Phase 2	D20	Working fuel gauge sensor capable of monitoring H2 levels within +/- 5%	DOE & ECoE	Q2 FY12

	Phase	Go/No-Go	Criteria*	Date	
✤ Go/No-Go	Phase 1	G1	Go/No-Go Decision on fuel gauge sensor (On Track)	+/- 5% of H ₂ Stored	Q4 FY10
		* all Go/No-Go decis	ions will be based on the most current DOE Technical Targets; the components or designs that most favorably con	pare to the DOE Technical Targets will be chosen	ı

A Milestone	Phase	Milestone	Description	Dependencies	Date
* Willestone	Phase 2	M2	Fuel gauge sensor development and demonstration	TASK 2.1	Q1 FY11

Pressure relief

valve

Copper plate on


top of foam

LANL developed and demonstrated a novel acoustic fuel gauge sensor on

- Three different metal hydrides
- Three different cylindrical vessels
- Metal hydride conditioning

Investigating fuel gauge sensor response as a function of

- Transducer placement
- Metal hydride compression
- Internal gas pressure in the absence of a metal hydride
 - Ar
 - H₂
- Ancillary Components
 - Valve position
 - Line attachments

72 mm (large cyl.)

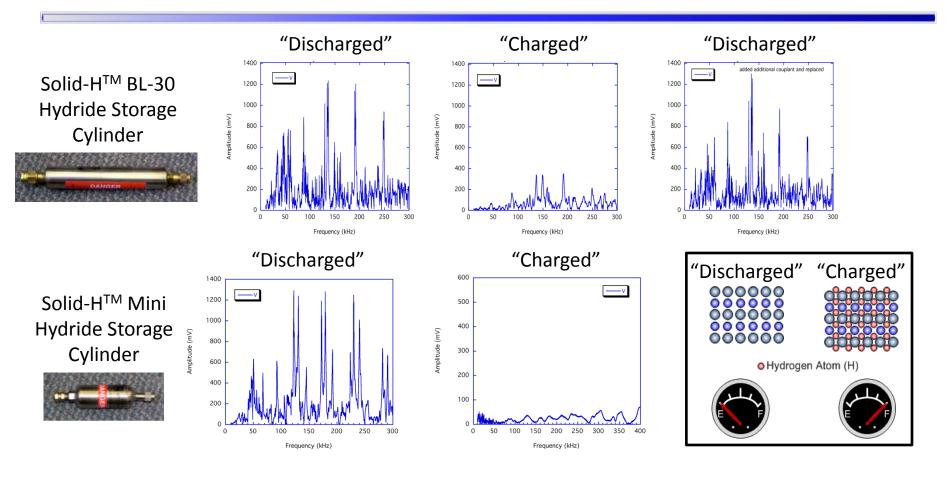
Solid H[™] cylinder

Transducers

- "Home made" cylinder using stainless steel vessel and Swagelok[®], ¼" 316 hardware.
- Ergenics[™] 208 powder free to flow and settle within container volume. Introduces "randomness" to the measurement?

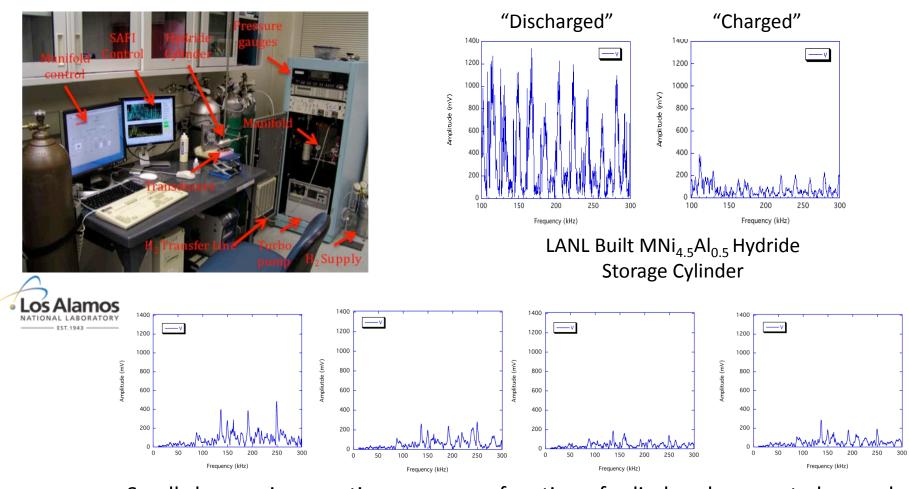
Swagelock® quick

yellow = acoustic gel


Table surface

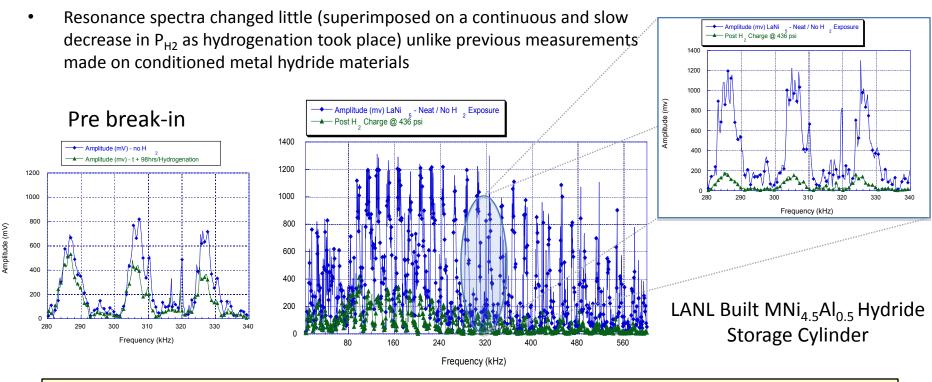
couplant

disconnect


line

UNCLASSIFIED

LANL Novel acoustic fuel-gauge sensor capable of accurately measuring the "charged" and "discharged" states of various metal hydrides



Small changes in acoustic response as function of cylinder placement observed

HSECoE

- New hydride pressurized > 300 psig. Hydride sluggish to hydrogenate
- Cylinder Temp (pre break-in) did not rise more than few degrees above ambient

LANL Novel acoustic fuel-gauge sensor capable of tracking the progress of metal hydride charging and hydride cycling effects

Post break-in

Task 2 Summary: Acoustic Fuel Gauge Sensor

- Level gauge milestones for FY'10 are on track and will be met by end of Q4.
- The change in swept acoustic frequency response with metal hydride

hydrogenation/dehydrogenation observed in commercially prepared metal hydride cylinders has been reproduced in simple stainless steel vessels

-Characteristic response observed for two different metal hydride alloys

–Ergenics[™] 208 and LaNi₅ alloy obtained from Aldrich in different cylinder masses/volumes show same effect

- Experiments performed with neat LaNi₅ show transition from neat alloy to hydrided-alloy during metal hydride break in procedure.
- Experiments confirm that sound waves are coupling with, and interacting with, the metal hydride within the stainless steel pressure vessels and not due to secondary effects.
- After a prolonged, two week break-in period, the previous the characteristic acoustic behavior observed in Solid-H[™] commercial metal hydride cylinders and in house-prepared, Ergenics[™] 208 metal hydride based hydrogen storage systems were duplicated.
- Patent Submitted
- Acoustic sensor may be useful for Metal Hydride and Adsorbent cycling studies

LANL Demonstrated novel acoustic fuel-gauge sensor with metal hydrides

Task 2 Future Work: Acoustic Fuel Gauge Sensor

- Investigate the effects hydrogen head pressure on acoustic response
- Investigate the effects valve positioning and supply lines on acoustic response
- Perform compaction test to determine if acoustic coupling effects
- Demonstrate tracking intermediate states of hydrogen charge of the commercial hydride cylinder and look at effects of temperature on the resonance spectra.
- Begin work with other H₂ storage media

Task 3: Shelf-life Modeling

✓<u>Relevance</u>:

- •DOE Targets Addressed:
 - •Cost
 - •Durability and Operability
 - •Environmental, Health and Safety
- ✓ <u>Expected Outcomes:</u>
- •Key variables: time, temperature, pressure, humidity, and geographic location
- •Updated cost models regarding production plant size, production plant storage capacity, and frequency of regeneration

✓ <u>Tasks:</u>

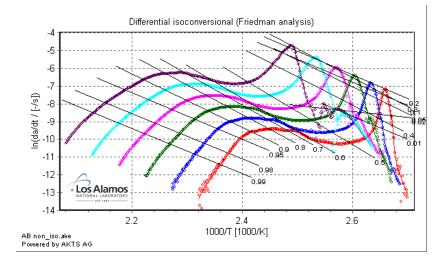
- 3.1 Develop models to predict shelf lives of hydrogen storage media
- 3.2 Provide accelerated aging protocols for shelf life modeling to the HSMCoE

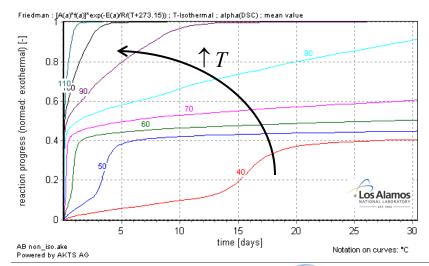
	Phase	Deliverable	Description	Delivery to	Date
✤ Deliverables	Phase 1	D2	Testing protocols for shelf-life data acquisition (COMPLETED)	CHSCoE	Q4 FY09
	FlidSe I	D8	Update testing protocols for shelf-life data acquisition (IN PROGRESS)	CHSCoE	Q4 FY10
	Phase 2	D21	Shelf-life models for candidate hydrogen storage media	DOE & ECoE	Q2 FY12

🖈 Milestone	Phase	Milestone	Description	Dependencies	Date
** Willestone	Phase 2	M3	Shelf-life model development	TASK 3.2	Q1 FY11

Task 3: Shelf-life Modeling of Neat AB

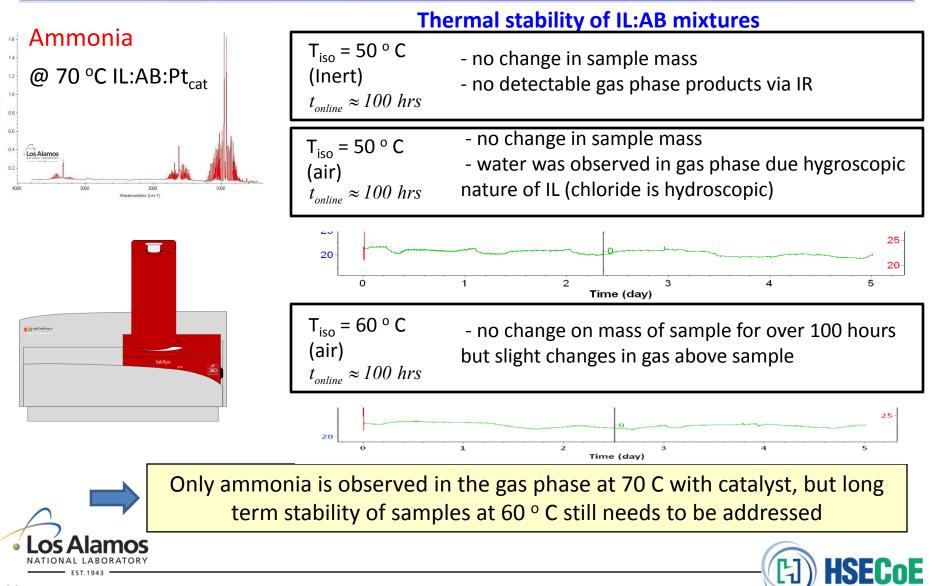
Current Shelf-Life Model for Ammonia Borane does not agree with experiment


Down Selected Current Shelf-Life Model for Ammonia Borane (under predicts AB stability)


Additional Experiments needed to accurately capture and predict shelf-life of Ammonia Borane

- Liquid-Phase Ammonia Borane
- Solid-Phase Ammonia Borane (Neat)

 Solid-Phase Ammonia Borane (impregnated)


> Need to redo the experiment with AB imbibed in methyl cellulose to eliminate foaming issues that are affecting accurate measurements

Task 3: Shelf-life Studies of Pt Catalyzed AB:IL

Task 3 Summary and Future Work: Shelf-Life Studies

Summary

- •Developed and updated testing protocols for accurate shelf-life data acquisition
- Collected shelf-life data for neat AB
 - Shelf-life model for neat AB under predicts stability because of foaming issues; resulting in inaccurate DSC, TGA, DTA, & Calorimeter data
- •Preliminary shelf-life data collected for a liquid AB formulation
 - Liquid-AB formulations stable for 100 hrs @ 60°C; need to measure shelf-life for extended time periods (>1000 hrs)

Future Work

- Collect shelf-life data (DSC, TGA, DTA, & Calorimeter) on AB with anti-foaming agent
 - Develop shelf-life model for solid-AB formulation
- Collect a complete set of shelf-life data on liquid-AB formulations
 - Develop shelf-life model for liquid-AB formulation
- Update experimental setup and protocols as needed to ensure accurate data for model development
- Verify model accurately predicts shelf-life models for extended time periods

✓ <u>Relevance</u>:

- DOE Targets Addressed:
 - Charging/Discharging Rates
 - Efficiency
 - Cost
 - Hydrogen Purity
 - Gravimetric and Volumetric Capacity
- ✓ Expected Outcomes:
- Rate models for reactor design and operation

✓<u>Tasks:</u>

- 4.1 Identify operating conditions and H₂ release rates for the state-of-the-art catalysts
- 4.2 Collate kinetics data from CHSCoE and develop rate models
- 4.3 Model reactors with coupled heat, mass, momentum, and kinetics
- 4.4 Provide feedback to CHSCoE with strategies on catalyst optimization and design

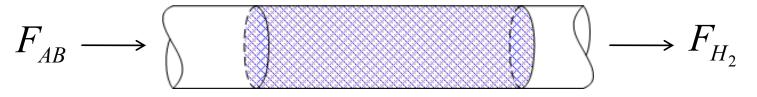
 $V_{reactor} = F_{A_o} \int_0^X \frac{dX}{-r_A}$

				Pha	se 1						Pha	se 2			Phase 3				
		FY	′09		FY10			FY11					FY	Y12		FY13		'13	
Objectives and Tasks	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3 (
Objective 4: Develop Rate Models for Hydrogen Release on Candidate Chemical Hydrides																			
TASK 4.1: Identify operating temperatures and hydrogen release rates for the state-of-the-art catalysts				D3															
TASK 4.2: Collect kinetics data from CHSCoE and develop catalytic reaction rate models						D5													
TASK 4.3: Model reactors with release kinetics coupled with mass and heat transfer effects							:	M1				D14							
TASK 4.4: Provide feedback to CHSCoE with strategies on catalyst optimization and design								D9				D15							

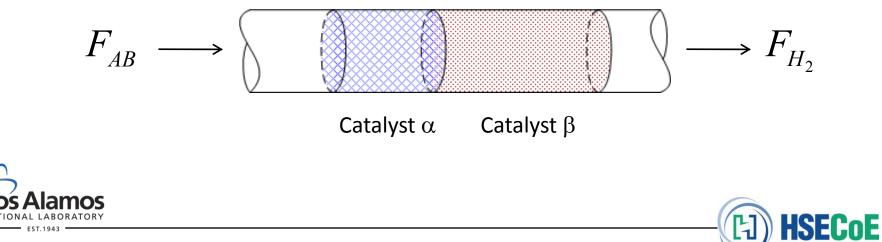
	Phase	Deliverable	Description	Delivery to	Date
		D3	Identify the operating conditions for rate data collection (COMPLETED)	CHSCoE	Q4 FY09
✤ Deliverables	Phase 1	D5 Collate rate data collected by the CHSCoE and develop rate model		ECoE	Q2 FY10
		D9	Provide feedback to CHSCoE on potential catalyst optimization strategies	CHSCoE	Q4 FY10
	Phase 2	D14	Rate model for chemical hydride hydrogen release	DOE & ECoE	Q4 FY11
	FildSe Z	D15	Provide update to CHSCoE on potential catalyst optimization strategies	CHSCoE	Q4 FY11

	Phase	Milestone	Description	Dependencies	Date
w winestone	Phase 1	M1	Reactor model with release kinetics coupled with heat and mass	TASKS 4.1 and 4.2	Q4 FY10

Objective: To develop a liquid phase reactor capable of fast start-up and transient response


Modeling Assumptions

- Plug Flow Reactor (PFR)/Packed Bed Reactor (PBR)
- Adiabatic (non-isothermal)
- Steady-State
- 0.8 mol H_2 / s (equivalent to full power demand for an 80 kW Fuel Cell Stack
- Hydrogen Selectivity equal to one
- No Catalyst Deactivation
- First Order Rate Law with respect to Ammonia Borane
- Constant Heat Capacities
- Reactants and Products are liquids (exception is H₂)
- Solvent is Inert/non-hydrogen bearing



CASE 1: Homogeneous Dual Catalyst Bed (No-Go)

Catalyst α + Catalyst β

CASE 2: Segregated Dual Catalyst Bed

Reactions

Low Temperature Catalyst (Room Temperature)

$$NH_3BH_3 \xrightarrow{k_1} P_1 + H_2$$

High Temperature Catalyst (T >90°C)

$$NH_3BH_3 \xrightarrow{k_2} P_2 + H_2 \xrightarrow{k_3} P_3 + H_2$$

Energy Balance

$$\frac{dT}{dV} = \frac{Ua(T_a - T) + \sum_{i,j} (-r_{i,j}) \left[-\Delta H_{rxn \ i,j} \left(T \right) \right]}{\sum_{j} F_j C_{pj}}$$

Adiabatic Operation $Ua(T_a - T) = 0$

Rate Expressions

$$-r_{1A} = k_1 C_A - r_{2A} = k_2 C_A$$
$$-r_{3P_2} = k_3 C_{P_2}$$

 $k_i(T) = A_i e^{\left(\frac{-E_{ai}}{RT}\right)}$

Mole Balances

$$\frac{dF_A}{dV} = (-r_{1A}) + (-r_{2A})$$

$$\frac{dF_{P_3}}{dV} = (-r_{3P_2})$$

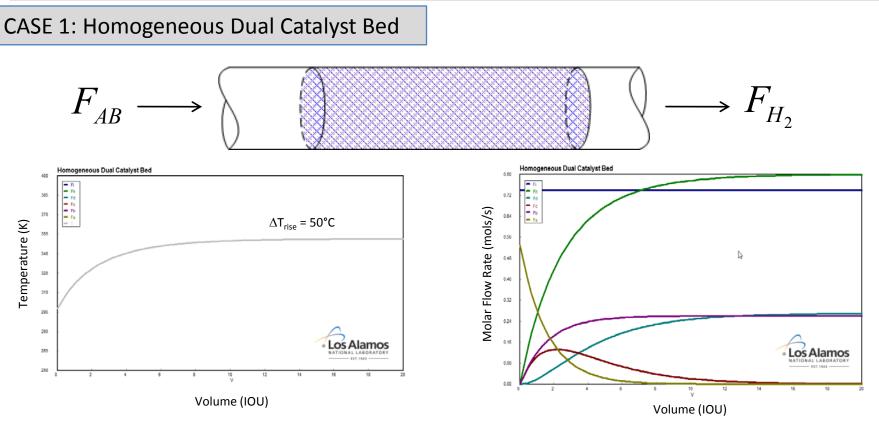
 $\frac{dF_I}{dV} = 0$

$$\frac{dF_{P_1}}{dV} = (-r_{1A})$$

$$\frac{dF_{H}}{dV} = (-r_{1A}) + (-r_{2A}) + (-r_{3P_{2}})$$

$$\frac{dF_{P_2}}{dV} = (-r_{2A}) - (-r_{3P_2})$$
• Los Alamos

EST. 1943


Required Data

Rate Expressions*

$$-r_{i} = A_{i}e^{\left(\frac{-E_{ai}}{RT}\right)} \left[C_{AB}\right]^{\gamma_{i}}$$

- Heat Capacities^a (C_{pi})
- Heats of Reaction^{α} (ΔH_{rxn})
- Solubility of AB in Solvent^a
- * complete set reaction kinetics are still needed from the CHSCoE
 ^a measurements still needed

Solvent heat capacity can moderate adiabatic temperature rise

• Temperature rise strong function of solvent heat capacity and AB solubility

AB solubility is critical to gravimetric and volumetric capacity

- Solvent Heat Capacity can moderate adiabatic temperature rise
- > AB Solubility is critical to gravimetric capacity
- Need to tighten up governing rate equations/kinetics wrt
 - Order of reaction
 - Selectivities (i.e., impurities)
 - > Operating temperatures (broader temperature range)
 - AB concentration
 - Catalyst durability
 - Mass and heat transfer
 - Flow systems

> Rate of H₂ Production for the Low Temperature Catalyst is too fast, thus decreases the overall hydrogen production efficiency (i.e., η =0.4, η_{max} =1) with the **homogeneous dual catalyst bed design**

Need to maximize hydrogen production efficiency while maintaining necessary exotherm to drive High Temperature Catalyst Route

No-Go on Homogeneous Dual Catalyst Bed Design (Case 1)

Task 4 Future Work: Reactor Design and Modeling

Acquire complete set of kinetics data (i.e., Selectivity, Conversion, etc.)

- Low temperature catalyst route
 - ✓ Hydrogen bearing solvents
 - ✓ Non-hydrogen bearing solvent
- High temperature catalyst route ✓ Hydrogen bearing solvents ✓ Non-hydrogen bearing solvent

- Mass transfer limited case
- Kinetics limited case
- Incorporate transient behavior into reactor design model [in collaboration with B. Hardy (SRNL)]

Task 5: Novel Reactor Designs for Startup and Transient Operation

✓ <u>Relevance</u>:

- •DOE Targets Addressed:
 - •Charging/Discharging Rates
 - •Efficiency
 - •Cost
 - •Hydrogen Purity
 - •Gravimetric and Volumetric Capacity

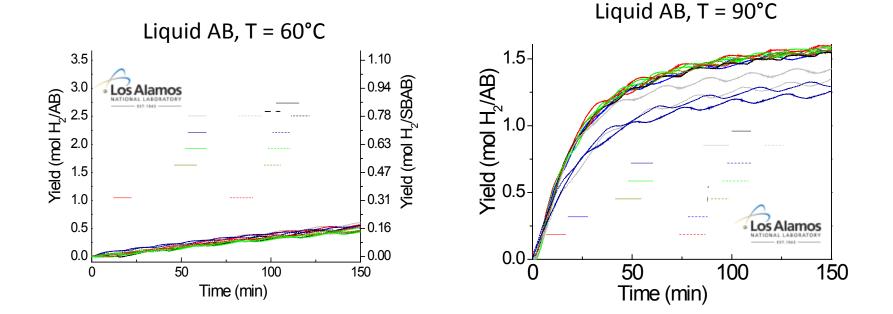
✓ Expected Outcomes:

•Novel reactor designs addressing startup and transient operation

✓ <u>Tasks:</u>

- 5.1 Identify reaction coupling schemes that minimize reactor start-up times and maximize energy efficiency
- 5.2 Examine transient effects on reactor turn-down

✤ Deliverables	Phase	Deliverable	Description	Delivery to	Date
	S Phase 1	D10	Reaction coupling addressing start-up and transient operation	CHSCoE, ECoE, & DOE	Q4 FY10
	Phase 2	D22	Report on transient operation of novel reaction coupling schemes	DOE & ECoE	Q2 FY12


					_
✤ Milestone	Phase	Milestone	Description	Dependencies	Date
	Phase 2	M5	Examination of transient effects on reactor turn-down	TASK 5.1	Q3 FY11

Task 5: Low Temperature Dehydrogenation Catalysts for Startup and Transient Operation

Objective: develop a low temperature catalyst (coupled with novel reactor designs) for start-up and transient operation for on-board hydrogen delivery in order to eliminate auxiliary heating devices

LANL has developed and screened a number of catalysts for the low-temperature (room temperature) dehydrogenation of liquid AB solutions-all have been unsuccessful

Task 5 Summary and Future Work: Low Temperature Catalysts for Startup and Transient Operation

Summary

• Screened approximately 20 catalysts for room temperature activity

- reactor tested catalysts cannot meet the startup requirement needed for an onboard hydrogen delivery system
- \bullet We do have homogeneous catalysts that release one-equivalent of $\rm H_2$ at room temperature
- Novel reactor designs (without auxiliary heating sources) addressing start-up and transient operation require the development of novel heterogeneous catalysts that are active at room temperature

Future Work

• Continued efforts will focus on converting the room temperature homogeneous catalysts into heterogeneous form while maintaining room temperature activity

Task 6: Hydrogen Impurities and Mitigation

✓<u>Relevance</u>:

•DOE Targets Addressed:

•Cost

•Durability and Operability

•Environmental, Health and Safety

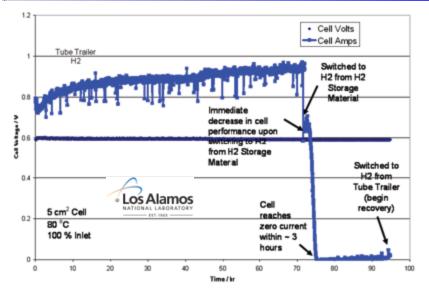
•Fuel Purity

✓ <u>Expected Outcomes:</u>

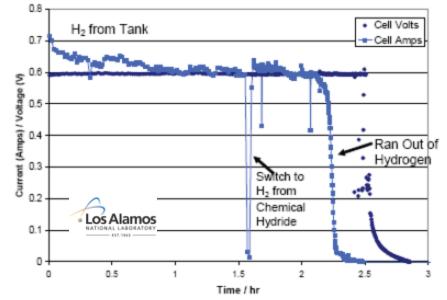
•Impurities demonstrating fuel cell degradation for all candidate storage materials

•Strategies for impurity mitigation/separation

✓ <u>Tasks:</u>


- 6.1 Identify impurities demonstrating fuel cell degradation
- 6.2 Determine adsorbate-adsorbent interactions
- 6.3 Quantify and model hydrogen impurities demonstrating fuel cell degradation
- 6.4 Identify novel impurity separation/mitigation strategies

✓ Go/No-Go Decision Criterion:

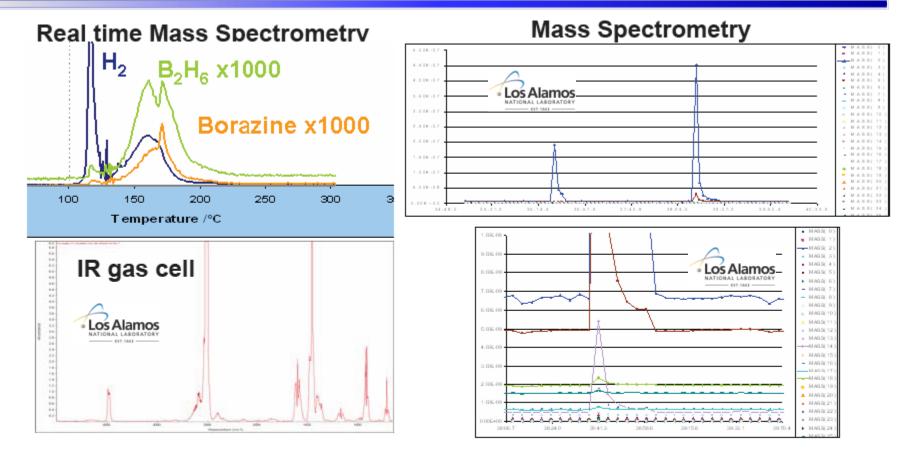

• DOE Technical Target of 99.99% H₂ purity (Q4 FY11)

	Phase	Deliverable	Description		Delivery to	Date
Deliverables	Dhoop 1	D11	Identify fuel cell impurities	D	OE, HSMCoE, & ECoE	Q4 FY10
	Phase 1	D12	Quantify minimum fuel-cell impurity level for safe operation	D	OE & ECoE	Q4 FY10
	Phase 2	D16	Determine fuel cell degradation via impurities	D	OE & ECoE	Q4 FY11
		D17	Update on minimum fuel-cell impurity level for safe operation		OE & ECoE	Q4 FY11
		D23	Working Impurity mitigation device with low cost, low volume & low mas	ss D	OE & ECoE	Q2 FY12
✤ Milestone	Phase	Milestone	Description		Dependencies	Date
* WileStone	Phase 2	M4	Impurity mitigation strategy development		TASKS 6.1 and 6.3	Q1 FY11
	•					
	Phase	Go/No-Go	Description		Criteria	Date
✤ Go/No-Go	Phase 2	-	Go/No-Go Decision on viable impurity mitigation/separation strategies	mass, volume, cost, purity		Q4 FY11
Los Alamos						
NATIONAL LABORATORY						HSE

Task 6: Hydrogen Impurities and Mitigation

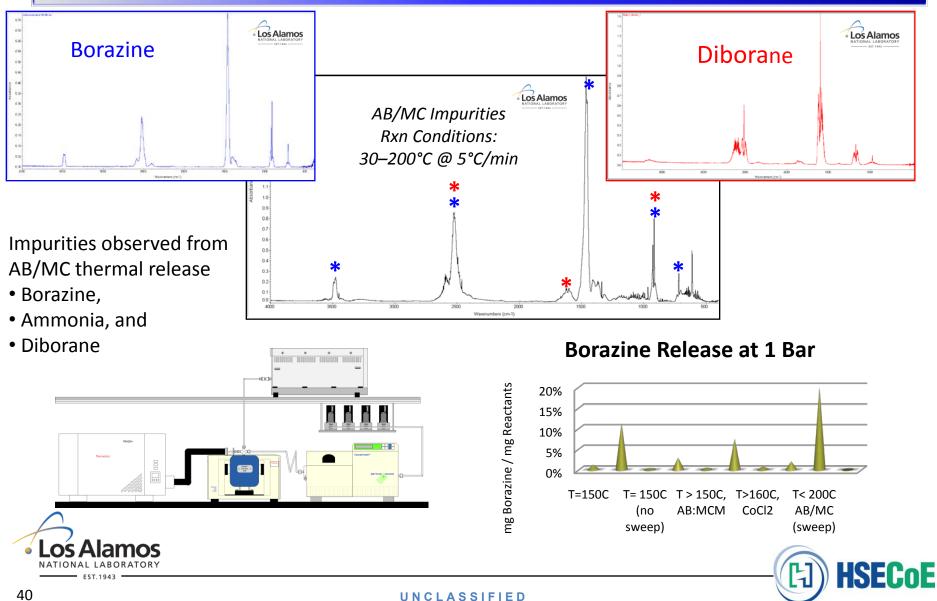
Raw H₂ from thermal treatment of AB contains borazine, which is known to poison Pt fuel cell catalyst

Simple inline filter removes borazine, FC performance unaffected


Fuel cell recovered under clean hydrogen and analysis indicates catalysis was poisoned, not the membrane.

 Future Test hydrogen release systems H₂ purity using long term fuel cell operation

Task 6: Hydrogen Impurities and Mitigation



We can use spectroscopy and spectrometry for determining H₂ purity But what about effects of very small, perhaps undetectable contaminants over long operating times?


Task 6: Hydrogen Impurities and Mitigation (solid AB)

Task 6: Hydrogen Impurities and Mitigation (solid AB)

Experimental Data **AB/MC** Borazine Production ransmission (% Los Alamos Raw Product w/o FILTER Stream from 0.2 mg_{Borazine}/ mg_{AB/MC Reacted} **AB** Thermal Decomposition Reaction Conditions: 30-200°C @ 5°C/min Timelmin **Borazine Sorption Capacity Activated Carbon** 500 1000 1500 2000 2500 3000 3500 Wave length (cm⁻¹) (ACN-210-15): Filtered Product Stream 0.26 mg_{Borazine}/ mg_{Carbon} from AB Thermal Decomposition ransmission Carbon Sorbent Scaleup w/FILTER • 5kg of H₂ results in 37kg of AB/MC (2.5 moles H_2 /mole AB) Time (min) 6.2 kg of borazine produced per fuel tank 1000 1500 2000 2500 3000 3500 500 24 kg of carbon per fuel tank Wave length (cm⁻¹)

Task 6: Hydrogen Impurities and Mitigation (AB:IL Liquid phase-Thermal Release)

Impurities still present in hydrogen from thermal release, but no diborane!

Task 6 Summary: Gas Phase Impurities & Mitigation

Impurities generated from Ammonia Borane are detrimental to fuel cell performance

> Ammonia borane imbibed methyl cellulose and neat ammonia borane produce identical impurities

• Amount of impurities is a function of temperature and heating rate

Mitigation strategies include increased control of reaction (i.e., thermal management, reactor design)

Ammonia borane in current ionic liquid demonstrated a decreased production of borazine and no diborane

Suppression of impurity generation can be achieved via catalytic routes of hydrogen release from liquid phase ammonia borane

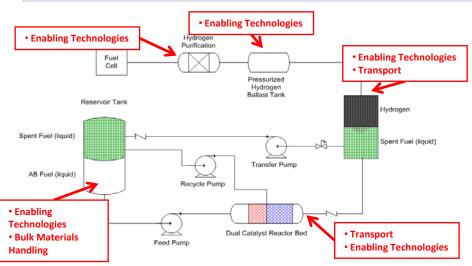
- Borazine can be scrubbed using activated carbon @ 0.26 mg_{Borazine}/ mg_{Carbon}
- > Completed IR calibrations for diborane, borazine, and ammonia @ the ppb levels

Accurate borazine and diborane measurments are nontrivial, extreme care and caution are required to quantify these impurities accurately

Task 6 Future Work: Gas Phase Impurities & Mitigation

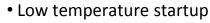
- In collaboration with LANL CHSCoE, quantify impurities from liquid AB formulations as a function of temperature ramp
 - in the presence of catalysts
 - in the absence of catalysts
- In collaboration with PNNL CHSCoE, quantify impurities from solid AB formulations as a function of temperature ramp
 - in the presence of catalysts/additives
 - in the absence of catalysts/additives
- In collaboration with MHSCoE, quantify impurities from candidate metal hydrides formulations as a function of temperature ramp
 - in the presence of catalysts/additives
 - in the absence of catalysts/additives
- In collaboration with UTRC, explore and test possible alternative scrubbing technologies for ammonia, diborane and borazine

➤ If Funding available, quantify the minimum acceptable levels of borazine and diborane for the safe operation of a fuel cell



Pacific Northwes

Task 7: LANL Liquid Phase Chemical Hydride Preliminary System Designs

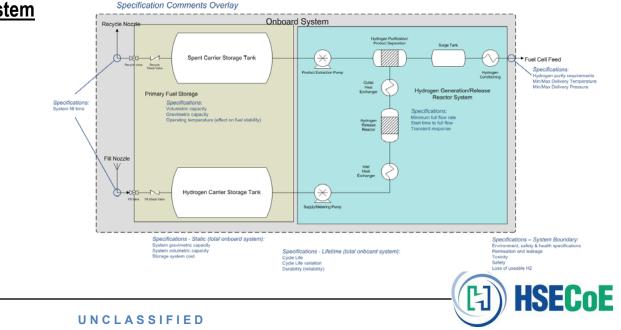


Critical Aspects of Liquid AB System

• Solvent

EST. 1943

- Physical properties
- Boiling pt, freezing pt
- Viscosities
- Heat capacities, etc
- Gas-liquid separator
- Hydrogen selectivities
- Heterogeneous catalytic reactor
 - Deactivation



Unit Operations of Liquid AB System

- Heterogeneous Catalytic Reactor (Transport)
- Gas-Liquid Separator (Enabling Technologies, Transport)
- Hydrogen Purifier (Enabling Technologies)
- Heat Exchanger (Enabling Technologies)

BOP Components of Liquid AB System

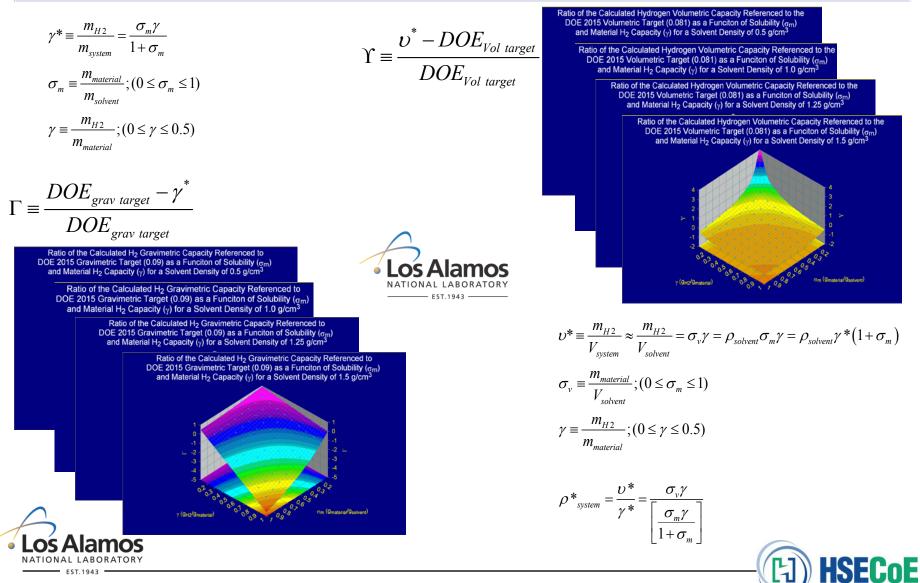
- Pumps
- Storage Tank(s) (Enabling Technologies)
- Fuel/Spent Fuel
- Ballast Tank

Task 7 Future Work: System Designs (System Architect)

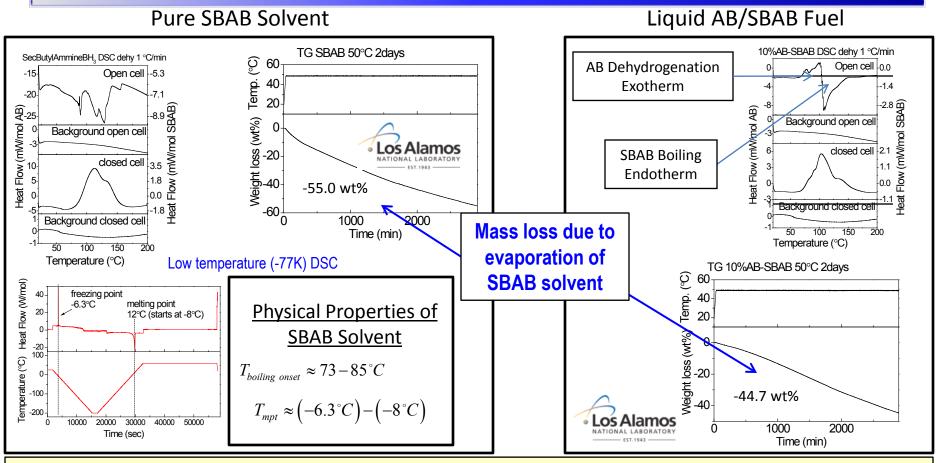
• Solid AB System: PNNL

- Physical properties of solid AB
- Demonstration/validation of bulk handling/reactor unit
 - Impurities
 - Feasibility/reliability

- Liquid AB: LANL
 - System sizing (Q3 FY10)
 - Spider chart


• Demonstration/validation of heterogeneous catalytic reactor (milestone Q1-2 FY11)

- Kinetics
- Catalyst deactivation
- Impurities
- Low temperature startup



Aspects of Liquid AB System

UNCLASSIFIED

Materials Operating Requirements: SecButyl Amine Borane(SBAB) Solvent for Liquid AB Systems

SBAB has low boiling point (high vapor pressure), slow H₂ release kinetics and low H₂ yields; Collaborated with CHSCoE in the decision to discontinue SBAB work

Acknowledgements

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Fuel Cell Technologies Program: Hydrogen Storage Technology Development Manager: Monterey Gardiner

