

System Design and Media Structuring for On-Board hydrogen Storage Technologies

DOE Annual Merit Review June 8, 2010

Darsh Kumar, P.I.

General Motors Company

Project ID: ST009

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Project Start: March 2009

Phase I end: July 2011

Phase II end: July 2013

Project end: July 2014

Budget

• DOE: \$2,954,707

• GM Match: \$738,677

• Budget spent: 20%

Relevance/Barriers Addressed

- System weight and volume (A)
- Energy efficiency (C)
- Charging/discharging rates (E)
- Thermal management (J)

GM Team

Mandhapati Raju Senthil Kumar V. Scott Jorgensen Darsh Kumar Martin Sulic Thanh Do Mei Cai

Plan and Approach

Task 1: (Material identification and properties)

 Develop criteria for storage materials in the metal hydride (MH) and Adsorbent material categories and identify storage materials in the two categories

Task 2: (System simulation model for metal hydrides)

- Build storage system simulation models for sodium alanate

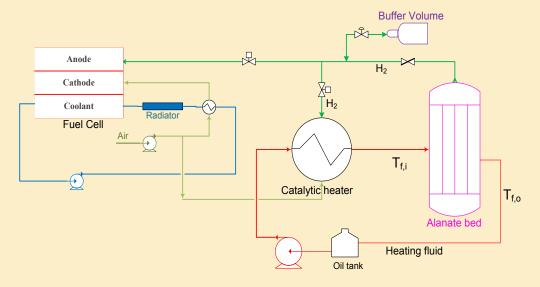
- Exercise simulation models for system performance
 Calculate performance metrics in relation to DOE targets
 Build detailed 2-D models to include heat transfer and reactions to guide system models

Task 3: (System simulation model for adsorbent system)

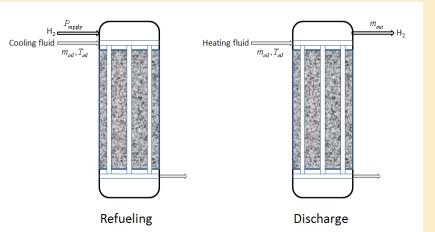
- Build storage system simulation models for activated carbon
- Exercise simulation models for system performance
- Calculate performance metrics in relation to DOE targets
- Build 2-D models to include adsorption and heat transfer to guide system models

Task 4: (Pelletization of AX-21 and Sodium Alanate)

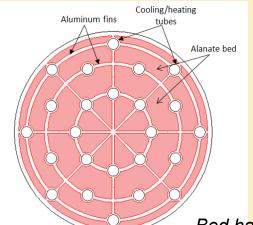
- Review of binders and additives for pelletization
- Test various binders and additives for pelletization
- Measure hydrogen uptake, thermal conductivity, and pellet strength


Task 5: (Integration with vehicle system model and fuel cell model)

Work with NREL, Ford and UTRC for integration of hydrogen storage models in a common framework



Schematic of Sodium Alanate storage system



Bed Properties	values	units
Length of the bed	1	m
Inner diameter of the bed	0.417	m
Outer diameter of the tubes	0.022	m
Porosity	0.4	
Fraction of volume of the bed		
occupied by cooling tubes and fins	0.26	
Mass of Hydride in the bed	101	kg

Alanate bed properties	
Bulk density	1000 Kg/m ³
Crystalline density	1670 Kg/m ³
Specific heat	1230 J/kg-K
Enhanced thermal	
conductivity	8.5 W/m-K

Bed has 24 cooling tubes interconnected by fins

Sodium Alanate System

System Details

- Gaseous H₂ in the free space based on bed porosity
- Overall heat transfer coefficients is based on correlation with 2-D COMSOL model
- Kinetics by Luo and Gross (2004)
- Heating fluid is set to 450K for tet phase and at 470K for hex phase decomposition
- Oil heating transients included to study cold start up capability of the system

- 50 g buffer tank is provided to handle the slow kinetics of Hex phase decomposition
- 12 kW catalytic burner for heating the oil
- 13 kg heating oil is provided within the vehicle
- Two storage beds for a full 5 kg usable H₂ system
- Efficient control system is developed to handle high transient demands

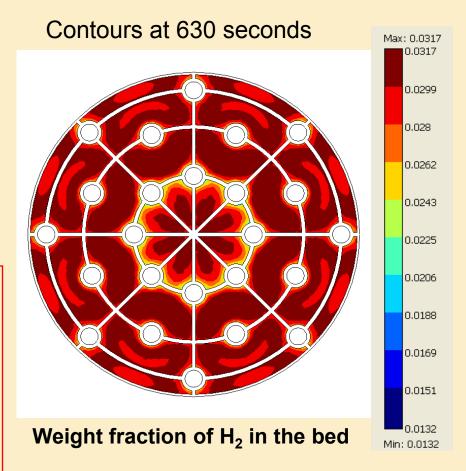
Control Strategy

Flow to fuel cell

Flow to buffer

```
if P_{bed1} > P_{Buffer}
First bed supplies the H<sub>2</sub> to buffer elseif
P_{bed2} > P_{Buffer}
Second bed supplies the H<sub>2</sub> to buffer else
No bed supplies to buffer
```

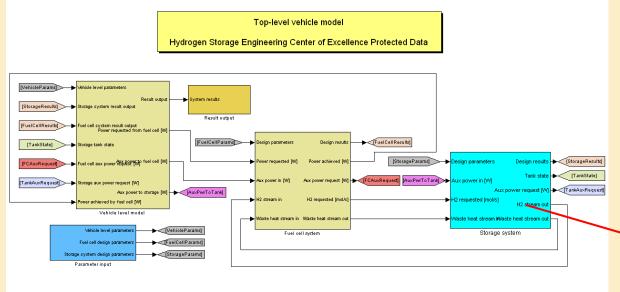

Refueling (2-D COMSOL Model)

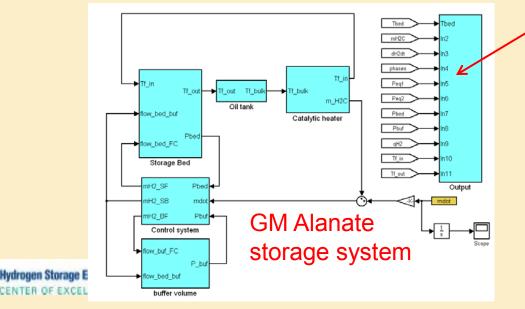

- Obtained key information from 2-D COMSOL refueling model
 - bed design
- overall heat transfer coefficient defined below
 - state of the bed after 10.5 min of refueling
- Initial state of the system based on 10.5 min refueling time

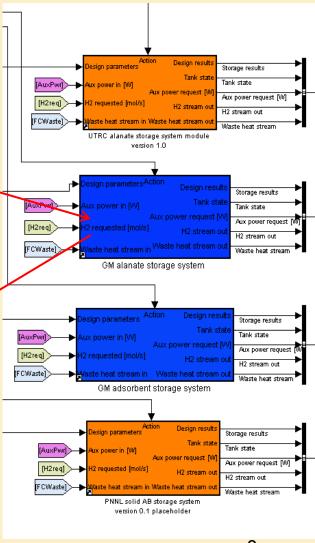
$$\frac{1}{U_{eff}} = \frac{1}{h_c \eta_f} + \frac{L_{eff}}{k_{MH}};$$

$$\eta_f \text{ is fin efficiency}$$

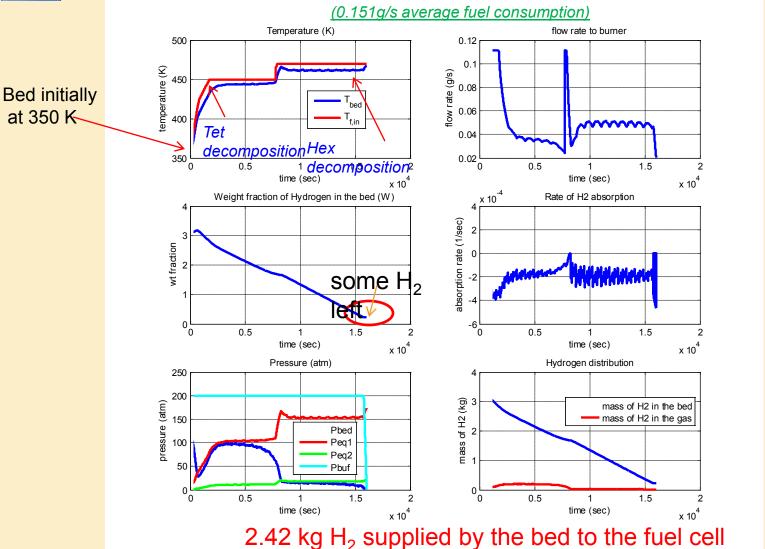
$$L_{eff} \text{ is characteristic bed length}$$

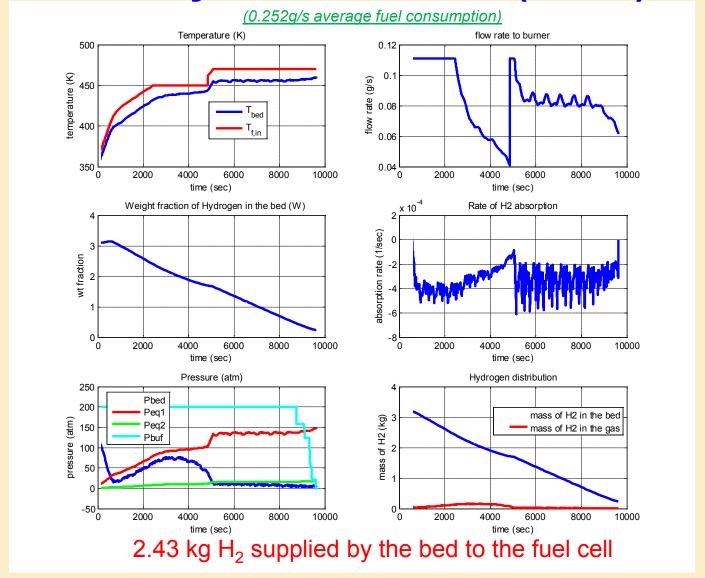

$$\eta_f, L_{eff} \text{ are evaluated from 2D COMSOL model}$$

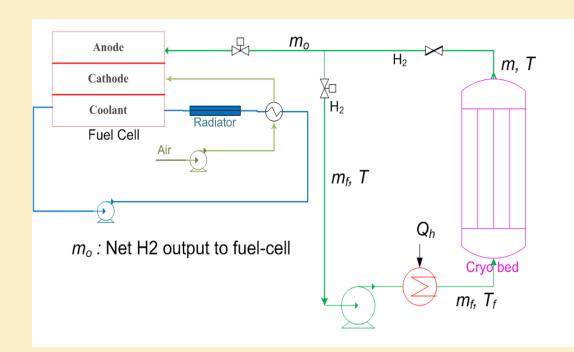

Average weight fraction in the bed is 0.305

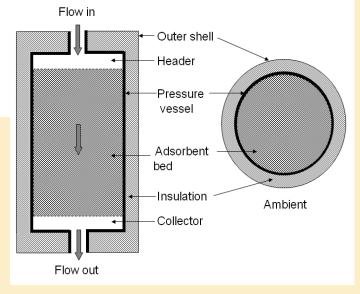


Integration in the Framework


Framework developed by UTRC-FORD-GM

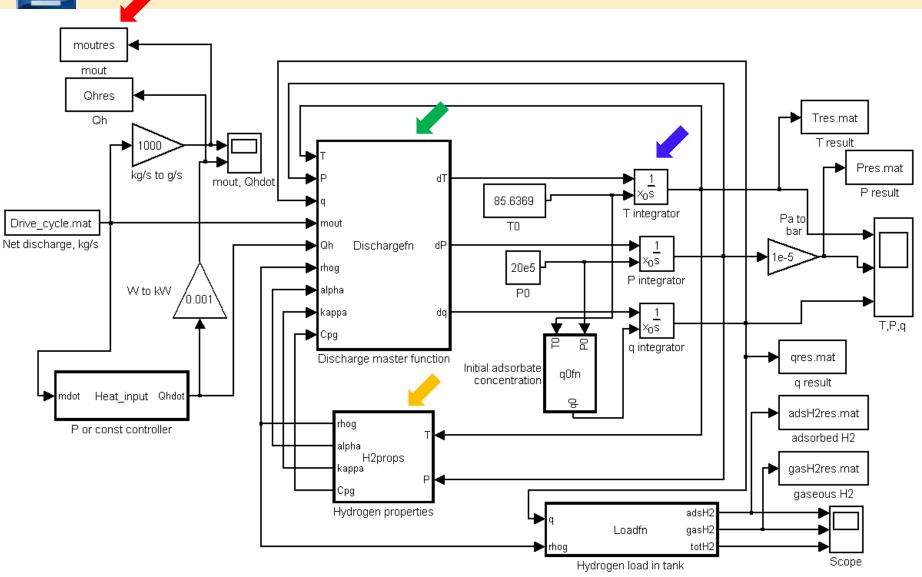

Drive Cycle Simulation (HWY)


Drive Cycle Simulation (US06)



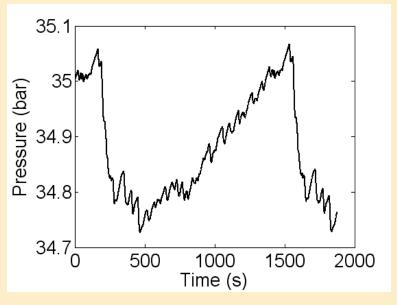
Cryoadsorption System

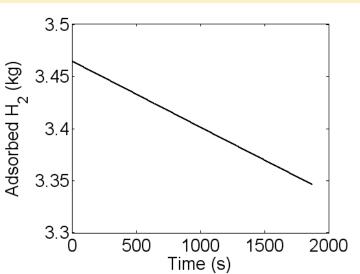
Schematic of the cryoadsorption system

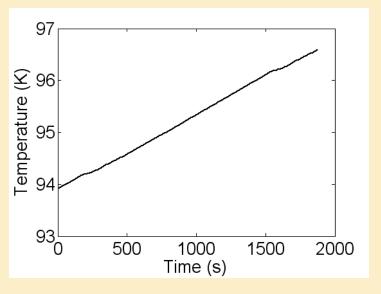

Cryoadsorption System

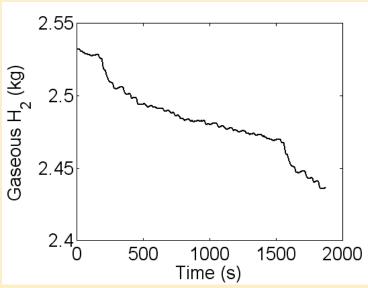
- System model based on mass balance, energy balance, and adsorption equilibrium
- Heat needs to be added during discharge to avoid very low tank temperatures and discharge most of the hydrogen.
- Various heat addition rate schemes investigated
 - Varying heat input proportional to the hydrogen demand by the fuel cell
 - Constant heat input proportional to the average hydrogen demand over the drive cycle
- Heat could be added into the tank by heating a part of the recirculating gas or by an electric heater.
 - Since the gas is in intimate contact with the bed, first mode of heating could be efficient
 - The electric heater, though less efficient, might be beneficial in terms of gravimetric / volumetric capacities of the system, since there are no auxiliary components

<u>GM</u>

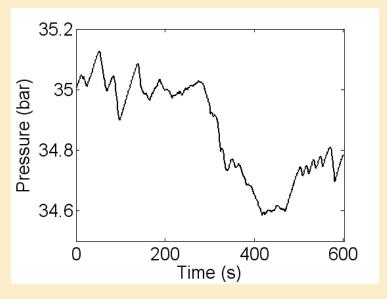

Simulink Model

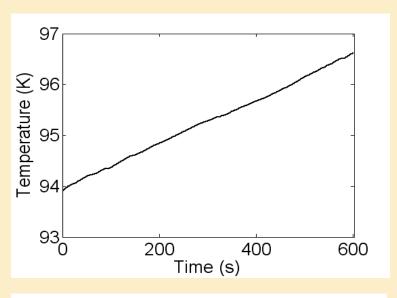


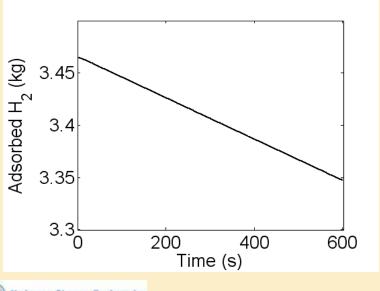


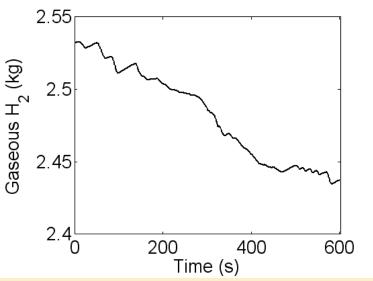


AX-21: FTP-75, 0.36 kW Constant Heating Rate

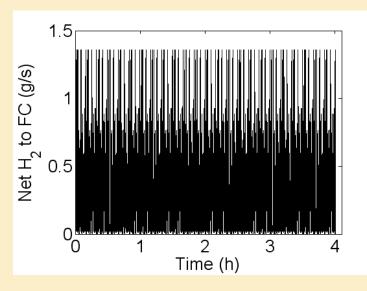


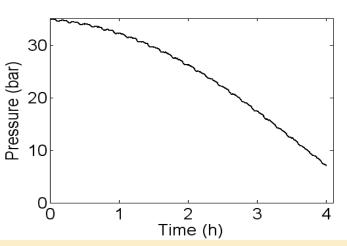


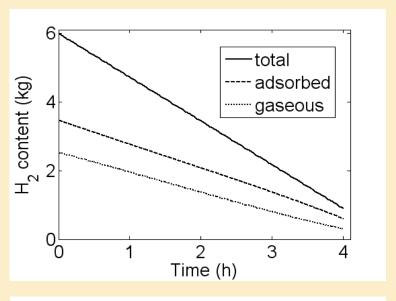


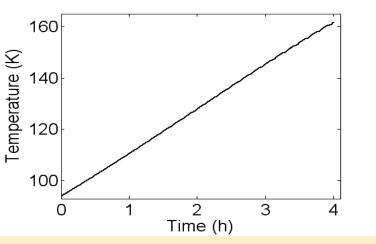


AX-21: US-06, 1.13 kW Constant Heating Rate









AX-21 bed: Repeated US-06 cycles

Preliminary Gravimetric and Volumetric Densities for sodium alanate system

Number of beds		2
Deliverable hydrogen	kg	4.85
Total length of the bed	mm	1292.0
Diameter of the bed (inner)	mm	416.0
Diameter of the bed (outer)	mm	436.9
Shell material		Composite carbon
Weight of 2 vessels including liner	kg	61.4
Total Weight of alanate	kg	202.00
Weight of tubes and fins	kg	143.10
Accessories (manifolds, end plates etc.)	kg	20
Pump/HEX/burner	kg	8.00
Other BOP components	kg	7
Oil mass	kg	13.00
Buffer	kg	5.05
Buffer volume	liters	11.30
Total volume of the beds		387.5
Total system volume	liters	407.8
Total system mass	kg	459.50
Gravimetric density		0.0105
Volumetric density volumetric density		0.0119

Vessel thickness and materials estimates by <u>Lincoln Composites</u>

Preliminary Gravimetric and Volumetric Densities for Activated Carbon system

System Temp & Pressure	77 K, 35 bars
Final pressure	4 bar
Adsorbent volume (L)	265.5
Total usable H2	5 kg
Adsorbent mass (kg)	75.3
Total inner volume (L)	307.4
Cylinder L (cm)	104
2 Hemispheres D (cm)	53
INNER VESSEL & OUTER VESSEL Material	Aluminum 6061
Inner vessel Mass	47.5
Outer vessel mass (kg)	12.4
Insulation mass (kg) – MLVSI (1" thick)	12
BOP components (kg)	15
Total mass (kg)	162.2
Gravimetric capacity	0.0308
Outer Volume(L)	398.3
Volumetric density (kg/L)	0.0126

			NaAIH ₄	Comments	<u>AX-21</u>	Comments	2010	2015	ultimate
Gravimetric	Gravimetric Density	(Kg H ₂ /Kg system)	0.0105	composite vessel, aluminum HEX	0.0308	Inner and outer vessels aluminum	0.045	0.055	0.075
Volumetric	Volumetric Density	(Kg H₂/liter)	0.0119	HEX significant vol and wt fraction	0.0126	MLVI btwn vessels	0.028	0.040	0.070
Cost	System Cost	(\$/KWh net)					4	2	TBD
300.	Fuel Cost	(\$/gge)					133	67	TBD
	Minimum Operating Temperature	(°C)	-30	with buffer and void-space H2, seems OK	-30	not an issue	-30	-40	-40
	Maximum Operating Temperature	(°C)	50	can be done	50	if enough insulation	50	60	60
	Min. Delivery Temperature	(°C)	-40	Not a problem	-40	not an issue	-40	-40	-40
Durability/	Max Delivery Temperature	(°C)	85	H2 cooled in the tank to FC delivery	85	not an issue	85	85	85
Operability	Cycle Life (1/4 - full)	(N)	NA		NA		1000	1500	1500
	Cycle Life (90% confidence)	(% mean)	NA		NA		90	99	99
	Min. Delivery Pressure (PEMFC)	(bar)	4	Not a problem	4	Not a problem	4	3	3
	Min. Delivery Pressure (ICE)	(bar)	?	Could be an issue	?	Could be an issue	35	35	35
	Max. Delivery Pressure FC/ICE	(bar)	12	ОК	12	OK-FC, issue for ICE	12/100	12/100	12/100
	On Board Efficiency	(%)	75%	41 kJ/mole, 90% eff burner, heat media	95%	6 kJ/mole + mCpΔT	90%	90%	90%
	Wells to Power Plan Efficiency	(%)	NA		NA		90%	90%	60%
	Fill Time (5Kg H ₂)	(min.)	10.5 min		4.2 min	Cold H2	4.2	3.3	2.5
	Minimum Full Flow Rate	([g/s]/KW)	0.02	H2(g) in buffer and void-space	0.02	H2 in gas-phase	0.02	0.02	0.02
Charge/	Start Time to Full Flow (20°C)	(sec,)	5	H2(g) in buffer and void-space	< 5	H2 in gas-phase	5	5	5
Discharge Rates	Start Time to Full Flow (-20°C)	(sec,)	15	H2(g) in buffer and void-space	< 15	H2 in gas-phase	15	15	15
	Transient Response	(sec,)	0.75	H2(g) available, mech/elect issue	0.75	H2(g) available, mech/elect issue	0.75	0.75	0.75
Fuel Purity	Fuel Purity	(%)					99.99%	99.99%	99.99%

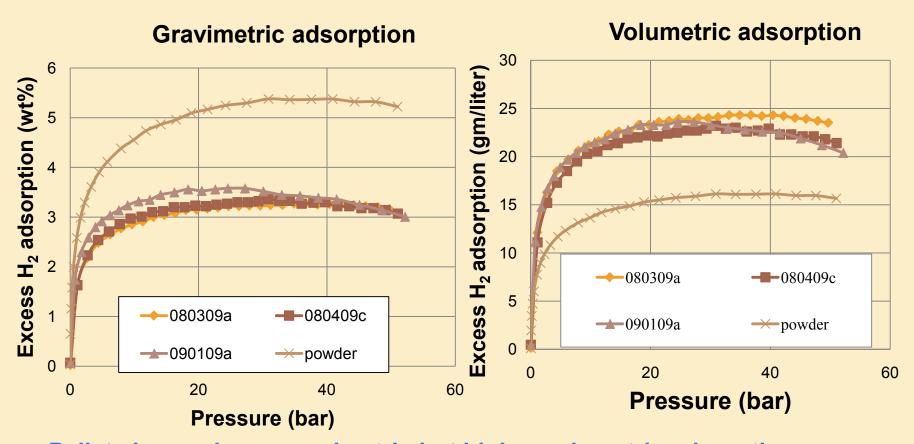
Media Structuring Studies

Hydrogen storage media are generally characterized by low density and low thermal conductivity leading to low gravimetric and volumetric energy densities

Motivation: To engineer compaction of the storage media for

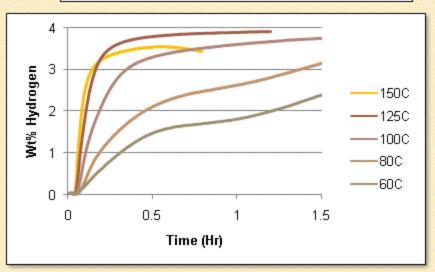
- increased density
- increased thermal conductivity, and
- easier handling, while
- maintaining hydrogen absorption/adsorption capacity, and
- kinetics

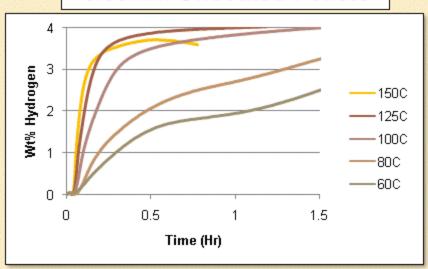
AX-21 Pelletization Data – Surface area and density

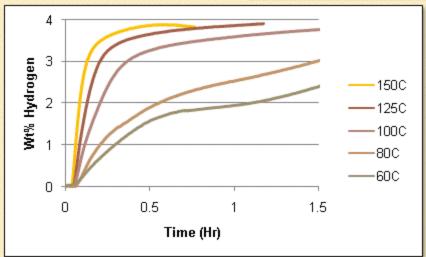

Adsorbent surface area is a good indicator of its hydrogen adsorption capacity

Sample ID	Binder	T (°C)	P (MPa)	ρ (g/cm³)	S _{BET} (m²/g)	V _{micro} (m³/g)	ρ*S (10 ⁶ m ⁻¹)
AX-21	-	-	-	0.3	3070	1.39	921
072809a	PVDF-HSV900- 5 wt%	200	197	0.59	2078	0.92	1230.2
080309a	PVDF-HSV900 - 5 wt%	200	280	0.74	1744	0.80	1290.6
092809a	PVDF-HSV900 - 5 wt%	200	375	0.84	1645	0.71	1381.8
080409c	PVDF-301F - 5 wt%	200	280	0.68	1880	0.87	1278.4
081109a	PVDF-301F - 5 wt%	200	375	0.77	1622	0.72	1248.9
090109a	PVA solution - 5 wt%	230	280	0.64	2012	0.90	1291.7

AX-21 Pellets Gravimetric and Volumetric Capacity at 77 K


Pellets have a lower gravimetric but higher volumetric adsorption capacity than the original graphite AX-21 powder.




Sodium alanate: Hydrogen Uptake – Various Temps

6.35mm EPDM Coated Pellets

6.35mm Uncoated Pellets

Loose Powder

Sodium alanate pellets Thermal conductivity (W/m K)

Thermal Conductivity n (All Pellets: 9.525	Die Pressure (psi)	Uncoated Pellets	One coat	Three coats	
Alanate with excess aluminum		50,000	9.6	9.43	9.44
+ 5 mol% expanded graphite	High-energy mixing	50,000	5.74	5.93	6.74
+ 5 mol% graphite flakes	High-energy mixing	50,000	5.95	7.10	7.28
+ 5 mol% expanded graphite	Low-energy mixing	50,000	8.56	-	-
+ 5 mol% graphite flakes	Low-energy mixing	50,000	8.86	-	-
+ 5 mol% expanded graphite	Low-energy mixing	10,000	2.98	-	-
+ 5 mol% graphite flakes	Low-energy mixing	10,000	3.26	-	-

Summary

- Systems designed and Simulink models built for sodium alanate and AX-21 systems
- 2. Both system models integrated within the Simulink framework and system simulations performed for various operating conditions and drive cycles
- 3. For the adsorbent system,
 - H₂ in the adsorbed phase responds to the steady demand while the gas- phase H₂ responds to demand fluctuations.
 - A constant heating rate addressing the heat of desorption for the average FC demand is sufficient during the discharge cycle.
 - An electrical heater may offer advantages because of its simplicity

AX-21 Pellets

- Gravimetric hydrogen uptake decreases, but the volumetric capacity increases in comparison with powder
- Modifications needed in the pelletization process

Sodium alanate Pellets

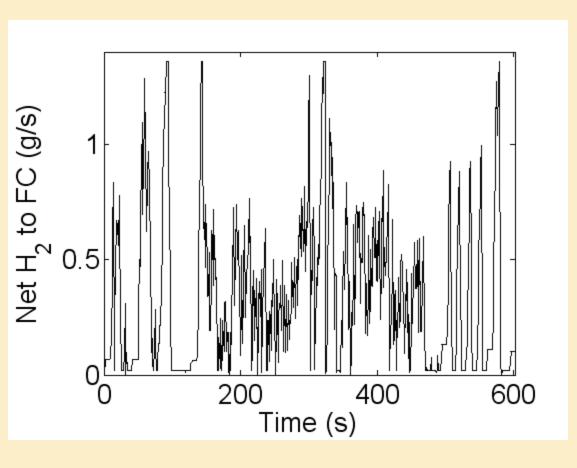
- Coatings diminish pellet damage
- H₂ uptake capacity not affected by the coating
- Thermal conductivity depends on the pressing pressure but the coating does not hinder thermal conductivity

Collaborations

- UTRC, NREL, Ford system modeling and development of integrated framework
- SRNL Detailed COMSOL models including heat and mass-transfer, reaction kinetics, and flows in systems
- UTRC, Ford, UQTR Media compaction studies
- JPL, UQTR, SRNL System architecture for prototype systems
- OSU micro-channel heat exchangers and catalytic burner

Proposed Future Work

- 1. Evaluate metal hydride and adsorbent systems for additional drive cycles and operating conditions
- Test system performance at extreme temperatures and sensitivity studies for various parameters
- 3. Adapt and improve system model for next metal hydride candidate
- 4. Cryoadsorbent system models and performance metrics for higher pressures
- 5. Refueling strategies for cryoadsorbent systems
- 6. Examine kinetics, mechanical stability and thermal conductivity dependence on pellet diameter and binder/coating material
- 7. Improve pelletization techniques to make pellets faster with no or minimal adverse impact on hydrogen uptake capacity and kinetics



Supplementary Slides

US-06 Cycle: Hydrogen Demand

The US-06 cycle is a shorter but more aggressive cycle than FTP-75

It consumes 212.54 g of H_2 in 601 s, for an average demand of 0.354 g/s.

• AX-21: For ΔH of 3.2x10⁶ J/kg, and 0.354x10⁻³ kg/s average discharge rate, the heating rate = 3.2x0.354 kW = 1.13 kW

Sodium Alanate Pelletization

- Presses easily into pellet, no addition of binder required to maintain pellet integrity. However, binder coating slows oxidation in air.
- EPDM dissolved in solvent. Pellets dipped into solutions and allowed to dry between coatings
- Average binder wt < 1% for each coating of 70:4 EPDM
- EPDM = Ethylene Propylene Diene Monomer (M-class) rubber
 - □ Ethylene content ≈ 45 75%, Diene content ≈ 2.5 12wt% (provides resistance to tackiness), EPDM mixtures 70:4, 50:4, 50:8 & 60:4.

