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Overview

 Start: 10/1/05
 End: 9/30/10
 Percent complete: 90% 

F. Codes and Standards

P. Understanding of Hydrogen 
Physisorption & Chemisorption

Q. Reproducibility of Performance

 Funding received in FY09

 $400K

 Funding for FY10

 $350K

Timeline

Budget

Barriers Addressed

Partners

http://www.fzk.de/fzk/idcplg?IdcService=FZK&node=Home&lang=en�
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The objective of this study are to understand the safety issues 
regarding solid state hydrogen storage systems through:

 Development & implementation of internationally recognized 
standard testing techniques to quantitatively evaluate both 
materials and systems. 

 Determine the fundamental thermodynamics & chemical kinetics
of environmental reactivity of hydrides. 

 Build a predictive capability to determine probable outcomes of 
hypothetical accident events.

 Develop amelioration methods and systems to mitigate the risks of 
using these systems to acceptable levels. 

Relevance –
Objectives
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Relevance –
Modeling and Risk Mitigation

Punctured / Ruptured Tank

Storage
Vessel

Penetration

Possible Water Film

Ambient Atmosphere at Temperature
Contains O2, N2, CO2 & H2O(l), H2O(g)

Heat Generated by
Chemical Reaction Volume

Media Temperature Depends on
Ta, Ti, dH/dt, keff, cpeff, …

Surface

Liquid
Water

y

x

t

H2

Spilled Media

Accident Scenario (from UTRC risk assessment):
Storage system ruptured and media expelled to 
environment in either dry, humid or rain conditions.

Risk: Under what conditions will there be an ignition 
event?  What are the precursors to the ignition 
event? 

Temperature
Humidity
Water presence
Media geometry

Special thanks to
for their collaboration
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Approach –
Materials Test Plan

 The priority of materials to be analyzed is being conducted in 
consultation with the three Materials CoE’s, HSECoE and DoE. 
This includes metal hydrides, chemical hydrides, and adsorbents.

 Tested (UN Testing and Calorimetry):
 2LiBH4∙MgH2
 NH3BH3
 8LiH:3Mg(NH2)2
 Activated Carbon
 AlH3 (in progress)

 Modeling:
 2LiBH4:MgH2
 NH3BH3
 AlH3
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Approach –
UN Test Summary 

Material / UN Test State Pyrophoricity Self-Heat Burn Rate Water Drop Surface Contact Water 
Immersion

2LiBH4·MgH2

SRNL C

No ignition event. 
Hygroscopic 
material absorbed 
H2O from air.

Self-heated ~300 oC 
within 5 min at as 
Toven = 150 o is 
approached.

Flame propagated 
in 5 sec with burn 
rate of 52 mm/sec.

2 H2O drops required 
for near-instant 
ignition.

Material ignited
No ignition event 
recorded. Gas 
evolved at longer 
times. (5 min)

NH3BH3

SRNL

C
No ignition event. 
Hygroscopic 
material absorbed 
H2O from air.

Self-heated ~300 oC 
within 10 min, 5 
min at Tover=150 oC

Flame propagated 
in 6 sec with burn 
rate of 33 mm/sec

No reactivity 
detected

No ignition event 
recorded. Gas 
evolved at longer 
times. (5 min)

No reactivity 
detected

3Mg(NH2)2∙8LiH

AIST
C

Ignition event 
recorded in room 
temp experiment

Material failed 
pyrophoricity test

Flame Propagates 
at 463 mm/sec Material ignited Material ignited Not tested

 Flammability
Flammability Test
Spontaneous Ignition
Burn Rate

 Water Contact
Immersion
Surface Exposure
Water Drop
Water Injection

Special thanks to
for their collaboration
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Technical Accomplishments and Progress –
Alane Water Immersion Test

Time

 Material was synthesized chemically (Finholt et al. J. Chem. Soc., 69 (1947))
 Identity of material was confirmed by XRD as α-AlH3 with aluminum  impurity.  A 

crystallite size of 40 nm   was calculated by Sherrer method.  (R. Zidan, SRNL)
 Material sparked upon contact with water.  Precipitate formed upon completion of 

reaction.
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Technical Accomplishments and Progress –
Alane UN Water Drop Test 

Time

 A conical-shaped pile of Alane was set. A water drop is added on the top
of the pile.

 Sample reacted upon contact with water, initiating an ignition event. The
pile showed an orange-white flame.
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Technical Accomplishments and Progress –
Alane Wet Surface Contact

 Sample reacted upon in contact with the wet 
surface. 

 Sample sparked for a few seconds.
 Residual material bubbled for about 15 minutes.

Time
Tim

e
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Technical Accomplishments and Progress –
XRD Results for Alane Water Reactivity

Al(OH)3,
α-AlH3

Al, α-AlH3,
α-Al2O3, γ-Al2O3

α-AlH3, Al

 In the Water Drop Test, the heat generated by droplet initiates the 
combustion of Alane that forms primarily aluminum oxide.

 The larger amount of water present in the Wet Surface Contact 
Test, dissipates heat to avoiding ignition beyond sparks.  Material 
releases hydrogen as it produces aluminum hydroxide.
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Technical Accomplishments and Progress –
Alane Burn Rate Test

 Modified scale burn rate test was conducted
(100 mm L x 10 mm H x 20 mm W). 

 Test result validity has been assessed with other materials    
(~3% difference).

 Flame propagation rate ~ 250 mm/sec.

Time

Reactivity Rank:
8LiH:3Mg(NH2)2  >  AlH3  >  NaAlH4  >  2LiBH4:1MgH2  >  NH3BH3
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Technical Accomplishments and Progress –
Isothermal Calorimetry of Alane:  Air exposure at 40 oC

2AlH3 → 2Al + 3H2

 The initial exothermic event 
(∆H1) is  due to the water 
vapor interaction with AlH3.

 A competing effect is believed 
to take place between the 
dehydrogenation of AlH3
(endothermic) and the 
oxidation of Al (exothermic).

 Subtle changes in crystal 
structure are difficult to 
identify from reacted samples 
by XRD. In-situ XRD and 
NMR studies are currently 
underway to understand this 
behavior.
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Approach –
Model Development

 Phase 1 – Proof of Concept  Finished
 Test the capabilities of off-the-shelf modeling software to capture the physics

 Incorporate heat transfer, fluid dynamics, species generation, and chemical reactions
 Use generic material properties and constant heat and mass generation source.

 Phase 2 – Simple, “1-D” geometries
 Use realistic materials

 Non-constant H2 and Heat generation sources (time dependent) from calorimetry 
data

 Implement simple kinetics models tuned to match experimental results
 Identify measurements needed in future experiments

 Phase 3 – Model “3-D” experiments
 Expand one-dimensional model to represent two- and three-dimensional experiments
 Add temperature, pressure, and composition dependence to the kinetics

Model Objectives:
 Identify those scenarios most likely to result in hydride ignition
 Obtain an initial idea of mechanisms that precede onset of hydride ignition
 Identify the magnitude of mitigation required to minimize ignition probability
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Technical Accomplishments and Progress –
Phase 2:  “1-D” Sphere of 2LiBH4∙MgH2

Model r1 (in) r2 (in) r3 (in)
0 in 0.00 0.05 10.05
¼ in 0.20 0.25 10.25
½ in 0.45 0.50 10.50
1 in 0.95 1.00 11.00
1.5 in 1.45 1.50 11.50
2 in 1.95 2.00 12.00
2.5 in 2.45 2.50 12.50

FLUENT model:
 2-D, double-precision, axisymmetric
 Pressure-based, 2nd-order implicit, unsteady formulation
 Laminar Viscosity
 Heat transfer and Species models enabled
 Built-in hydrogen-air reaction enabled

Material Properties – porous 2LiBH4∙MgH2:
 Porosity (ε) = 0.5
 Particle Diameter (Dp) = 3.7x10-6 m
 Density (ρ) = 0.927 g/m3

 Thermal conductivity (k) = 0.5 W/m-K
 Specific heat (Cp) = 1.583 J/g-K
 Heat & Mass Generation – based on SRNL’s Calorimetry data

(2LiBH4∙MgH2 reacted with liquid water at 70 oC)
 Reaction propagation = 0.03 mm/s

(from Sandia’s contamination model by Dedrick et al.)

Initial conditions:
 Dry air @ 1 atm & 298 K
 Dry air is 76 wt-% N2, 23.4 wt-% O2, 0.6 wt-% H2O, and 0.0 wt-% H2

r2

r1

r3

Reaction initially in 
outer hydride shell

Reaction propagates 
through porous hydride

Ambient air

Special thanks to
for their collaboration
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Technical Accomplishments and Progress –
Phase 2:  2LiBH4∙MgH2 Sphere with 0.50” Radius

Flow 
time       

= 255 s

Flow 
time       

= 260 s

Mole fraction of H2 Mole fraction of O2 Mole fraction of H2O

OHOH 222
1

2 →+
 Maximum mole fraction of H2 is 26.6% (> LEL).
 Maximum temperature is 571oC                                    

(within the hydride, near the surface).
 Ignition event occurs between 255 and 260 seconds.
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 Models can be used to examine several parameters quickly, such as pellet size.
 Pellet size can be used as a mitigation strategy:

 No ignition event occurred for pellets with radii of 0.25 inches or smaller.
 The smallest pellet never reached the LFL.
 As pellet size increased, the time required to have an ignition event decreased.

 Similar results were shown when the pellet was initialized with ambient air or 
hydrogen gas filling the porous space.

Technical Accomplishments and Progress –
Phase 2:  2LiBH4∙MgH2 Sphere Results

Model Ignition Event H2 mole fraction Temperature

0.05 in None
Maximum value of 0.0123 at     

t = 160s
Maximum temperature of 

164.2oC at t = 300s

0.25 in None
LFL reached between                 

t = 55s and 60s
Max of 0.135 at t = 230s

Maximum temperature of 
752.4oC at t = 370s

0.50 in
Between t = 255s and 260s:

H2 mf = 0.266 and 0.015
Temp = 569oC and 571oC

LFL reached between                 
t = 30s and 35s

Max of 0.266 at t = 255s
Maximum temperature of 

1422oC at t = 540s
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 Model additions:
 Temperature dependent material properties.
 Temperature and concentration dependent reaction kinetics.
 Change modeling package from FLUENT to COMSOL.

 Cylindrical self-heating test data:
 Experimental differences between the cylinder and cube self-heating tests

 Identical experimental chamber and setup
 Similar volumes:  Cube volume = 1 in3; Cylinder volume = 0.8 in3

 A 2-D cylinder is simpler to model than a 3-D cube
 Reduces model size (number of equations) and calculation time (time to 

convergence)

 Ammonia Borane (NH3BH3):
 Ammonia Borane is one of the hydrides of interest to the Hydrogen 

Storage Engineering Center of Excellence (HSECoE).
 Well-studied, high capacity hydride with advantageous reaction rate.

Approach –
Phase 3:  NH3BH3 Cylinder Self-Heating
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Technical Accomplishments and Progress –
NH3BH3 Cylinder Self-Heating Results

 Sample begins to self-heat after about  58 minutes
 Time at set-point = 1 min

 Maximum Temperature observed = 236oC
 No ignition event was observed

Self-Heating Test – Setpoint Temperature = 70 °C

1 in

1 
in
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Approach –
Phase 3:  NH3BH3 Cylindrical Model

COMSOL model:
 2-D, double-precision, axisymmetric
 Conduction and Convection Heat Transfer
 Species Convection and Diffusion
 Continuity
 Chemical reaction kinetics – f(T, P, C, t)

Material Properties – porous NH3BH3:
 Bulk Density (ρ) = 0.765 g/cm3

 Thermal conductivity (k)  temperature dependent 
correlation based on PNNL data

 Specific heat (Cp)  temperature dependent correlation 
based on Florida Solar Energy Center data

 Heat Generation  temperature dependent correlation   
based on SRNL calorimetry data

 Mass Generation   temperature dependent correlation 
based on mix of PNNL data and SRNL calorimetry data

Initial conditions:
 Dry air in an oven (self-heating test) @ 1 atm & 250 oC

z 

r

Oven walls

Ammonia 
Borane 
Sample

Oven air

½”

1” 

O
ven w

alls

Oven walls

Special thanks to

for their collaboration
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Approach –
Risk Mitigation

 Four risk mitigation strategies (A, B, C, D) have been identified.

 Currently submitted for invention disclosure.

 Tests are being conducted on materials based on information 
provided by the HSECoE.  These materials include:

 8LiH:3Mg(NH2)2

 2LiBH4:1MgH2

 NaAlH4+4% (mol) TiCl3

 Testing strategies include:

 UN Water Drop Testing
 Water Vapor Calorimetry
 Cycling Experiments w/ Seivert’s Apparatus

Special thanks to

for their collaboration
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Approach –
8LiH:3Mg(NH2)2 Water Drop Test

 Reactivity towards water is reduced.
 Risk mitigation strategy A avoid ignition event characteristic of 

unmodified sample

Special thanks to
for their collaboration
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Technical Accomplishments and Progress –
Risk Mitigation-Calorimetry, T=40°C, RH=30%

• Comparable heat release for unmodified samples to A and C.

• Mitigant might not be affecting the release of hydrogen

• The rate of heat release:

• C > AIST > A > B

• The maximum is achieved faster by sample C

• B has lowest total heat release
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Summary

 A modified burn rate test has been developed and verified using 
less than ½ the material required for the standard burn rate test.

 Alane has unique environmental reactivity properties; non-
pyrophoric, but highly water-reactive resulting in “sparking” as 
opposed to ignition.

 Modeling has been used to determine a critical radius for 
pelletization of 2Li(BH4)-MgH2.

 The self-heating test has been modified to a cylindrical geometry 
to more thoroughly support the modeling effort.

 Four mitigation strategies have been evaluated preliminarily and 
several have been promising enough to be evaluated under cyclic 
sorption conditions.
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Proposed Future Work

 Conclude the modeling effort through Phase 3

 NH3BH3 (in progress)

 AlH3

 Conclude the UN testing and calorimetry of Alane.

 Conclude the UN testing of various metal hydrides mixed with 
automotive fluids.

 Experimentally verify the pellet size results from Phase 2 of 
the modeling effort.

 Utilize newly purchased high pressure DSC to improve the 
reaction rate calculations of the metal hydrides for the 
modeling effort.
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