

Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage

P. Pfeifer¹, C. Wexler¹, G. Suppes², F. Hawthorne^{1,3,4}, S. Jalisatgi⁴, M. Lee⁴, D. Robertson^{3,5}

¹Dept. of Physics, ²Dept. of Chemical Engineering, ³Dept. of Chemistry, ⁴Dept. of Radiology, ⁵University of Missouri Research Reactor

University of Missouri, Columbia, MO 65211

P. Buckley, J. Clement

Midwest Research Institute, Kansas City, MO 64110

Hydrogen Sorption Center of Excellence

2010 DOE Hydrogen Program Annual Merit Review, June 7-11, 2010, Washington, DC

Project ID #ST19

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: September 1, 2008
- Project end date: January 31, 2012
- Percent complete: 30%

Budget

- Total project funding:
 - DOE share: \$1,899K
 - Contractor share: \$514K
- Funding received in FY09:
 - DOE share: \$550K
 - Contractor share: \$111K
- Funding for FY 2010
 - DOE share: \$550K
 - Contractor share: \$227K

Barriers

Barriers addressed:

- System weight and volume
- System cost
- Charging/discharging rates
- Thermal management
- Lack of understanding of hydrogen physisorption and chemisorption

Partners

Interactions/collaborations:

- L. Simpson, P. Parilla, K. O'Neill-NREL
- J. Ilavsky—Advanced Photon Source, ANL
- Y. Liu, C. Brown-NIST
- L. Firlej—U. Montpellier II, France
- B. Kuchta—U. Marseille, France
- S. Roszak—Wroclaw U. Technology, Poland

Objectives & Relevance

Overall

• Fabricate high-surface-area, multiply surface-functionalized nanoporous carbon, from corncob and other precursors, for reversible H₂ storage with superior storage capacity:

1) Create surface areas \geq 4500 m²/g and average binding energy \geq 12 kJ/mol 2) Functionalize materials with B, Li, ...:

physisorption of H₂ on high-surface-area, high-binding-energy surfaces

- Characterize materials & demonstrate storage performance
- 1) Determine pore-space architecture, nature of functionalized sites, H₂ sorption isotherms (1-100 bar), isosteric heats, and kinetics, at 77-300 K
- Develop theoretical predictions of binding energies and H₂ sorption isotherms in B-substituted materials and engineered nanospaces (structure-function relations)
- 3) Use structure-function relations to understand storage performance of materials in terms of distributions of binding energies and pore widths
- Optimize pore architecture and composition
- 1) Use structure-function relations to optimize gravimetric and volumetric storage capacities
- 2) Compare B-functionalized materials produced by different synthetic methods
- Fabricate monoliths of optimized materials; determine storage capacities and charge/discharge kinetics under conditions comparable to an on-board H₂ tank
- 4) Reach target of 60 g H₂/kg carbon and 45 g H₂/liter carbon (~2015 DOE target) at 50 bar and 300 K, on monoliths

Approach—I

- Maximize surface area ('Engineered Nanospaces I')
 - High-surface area carbon from corncob: $S_i \sim 3000 \text{ m}^2/\text{g}$
 - Substitute with B and create additional surface area by boron neutron capture, fission into Li and alpha particle,

 ^{10}B + $^{1}\text{n} \rightarrow [^{11}\text{B}] \rightarrow ^{7}\text{Li}$ + ^{4}He + γ + 2.4 MeV

(U. Missouri Research Reactor), and etching of fission tracks

- Theor. optimum track width: $w \sim 1 \text{ nm}$ Theor. max. surf. area: $S_f = 2S_i \sim 6000 \text{ m}^2/\text{g}$

He

Create nanopores
 Raises H₂ binding energy
 ('Engineered Nanospaces II')
 In narrow pores, adsorption potentials
 overlap and create deep energy wells:
 Binding energy in wide pore: 5 kJ/mol
 Binding energy in narrow pore: ~9 kJ/moll
 Binding energy in narrow pore: ~9 kJ/moll
 Expect: ρ_{film, narrow pore} >> ρ_{film, wide pore} >> ρ_{gas}

Approach—II

- Surface functionalization with B/Li/... ('Substituted Materials') Raises H₂ binding energy further
 - Substitute with boron:
 Binding energy of H₂ on graphite: 5 kJ/mol
 Binding energy of H₂ on B-substituted carbon: 10-15 kJ/mol
 (electron donation from H₂ to electron-deficient B)
 Twofold use of B: (a) boron neutron capture;

(b) remaining B increases binding energy

- Compute adsorption potentials (QC) and simulate H₂ adsorption (GCMC, MD) to analyze exp. isotherms in terms of distributions of binding energies and pore widths
- Isosteric heats confirm that B-doping raises binding energy (preliminary results)
- Manufacture monoliths for conformable, lightweight tank
 - Minimizes wide pores; minimizes tank volume
 - Low pressure, 50 bar: enables conformable tank design
 - High binding energy, 15 kJ/mol: enables storage at 300 K

Approach—III: Tasks

Task	Progress Notes	% Comp
1. Fabricate functionalized carbons		
- Fabricate B-doped materials by vapor	Achieved. Samples characterized. Optimization of materials pending	80%
deposition & thermolysis of decaborane		
- Create fission tracks by boron neutron	On track. Pending: variety of samples	80%
capture (BNC)		
- Create new surface area by etching of	N ₂ and SAXS find no significant difference (surf. area, pore structure)	50%
fission tracks	between irradiated and unirrad. material. But irradiated samples show very	
	different H ₂ isotherms, considerably higher binding energy. Pending: etching	
- Pressing of carbon into monoliths	Not started	0%
– Pore drilling	Achieved with BNC; also by expulsion of HCl during pyrolysis of PVDC	20%
2. Fabricate hybrid materials	Not started	0%
3. Characterize and optimize		
materials/H ₂ storage performance		
– Map pores space by SAXS, N_2	SAXS methodology for nanopore analysis complete (shape, width, length,	60%
adsorption, H ₂ adsorption, SEM/TEM	wall thickness, porosity) and applied to numerous samples; N ₂ BET routinely	
	performed; H ₂ newly developed; SEM/TEM performed on select systems	
– Predict H ₂ isotherms in pure-C and B-	GCMC and MD simulations of H_2 isotherms complete for simple geometries	60%
substituted materials and compare with	and applied to select experimental systems; QC computations of adsorption	
exp. isotherms	potential for select B configurations complete	
– Measure H ₂ binding energies from	Developed method, based on absolute adsorption, to determine isosteric heats	50%
adsorption isotherms	at high coverage. Applied to pure-C and B-substituted materials. Best result:	
	$E_{\rm B,av} = 9-11 \text{ kJ/mol on B:C} = 1.4 \text{ wt\%}$	
- Compare different methods of B	Compared structure and H ₂ sorption of B-doping by decaborane vs.	30%
functionalization	copolymerization	
– Optimize gravimetric & volumetric	Developed quantitative relation between gravim. and volum. capacity at	70%
storage capacities	constant gravim. excess ads. (variable porosity, B:C content,)	
 Design test vessel for monoliths 	Not started	0%
4. Characterize and optimize monoliths		
- Construct test vessel for monoliths	Not started	0%
– Validate and optimize monoliths	Not started	0%

Materials synthesis/performance I

Technical Accomplishments 1

Validation of H₂ isotherms in independent laboratories

- U. Missouri: Hiden HTP1 volumetric analyzer (p = 1-100 bar, T = 77-775 K)
- NREL: Hy-Energy PCTPro-2000 volumetric analyzer
- "Blind": Independent analysis in another laboratory

6.0

 Gravimetric Excess Adsorption (wt%)

 0
 0

 0
 0

 0
 0

0.0

- Validation of HTP1 calibration and operation:
 - MU sample 3K measured in 3 independent labs: agreement within ~ 5%
 - "Reference sample" MSC-30 measured in 2 labs: agreement within ~ 5%
- Uniform materials & repeatable production within ~5%
- H₂ uptake at 77 & 80 K differs by as much as 10%. (Equilibration is faster at 80K on HTP1.)

Technical Accomplishments 2

Materials synthesis/performance II: B-doping & neutron irradiation (Part 1) В He ^{10}B + $^{1}n \rightarrow [^{11}B] \rightarrow ^{7}Li$ + ^{4}He + γ + 2.4 MeV 0.20 -N₂ adsorption 0.18 Small-angle x-ray scattering 1.4% B:C 3K-H6 (II, A) Irr 1min 109 0.16 3K-H6 (II, A) 0.14 3K-H6 (II, A) Irr 1min 1.4% B:C $3000 \pm 150 \text{ m}^2/\text{g}$ 107 0.12 [6~~~] (m) n 3300 ± 150 m²/g 0.10 -Same average 105 (d) (cm⁻¹) width & length 0.08 of nanopores 0.06 1000 0.04 -10 Nanopores 3K-H6 (II, A) 0.02 q (Å-1) 0.00 0 10 20 25 30 5 15 35 40 0.001 0.01 0.1 PoreWidth [A]

- No significant difference between irrad./unirrad. material according to N₂ & SAXS
- But significant difference in hydrogen adsorption (next slide)

Materials synthesis/performance II: B-doping & neutron irradiation (Part 2)

But H₂ adsorption is significantly different on irradiated material

Conclusions:

- Irradiated material hosts lower $\rho_{\rm film}$ and higher $E_{\rm B,av}$ than unirradiated parent material
- Hypothesis: High E_{B,av} due to surface defects created by fission products

– Low $ho_{
m film}$ due to film discontinuities at edges of newly created pores (fission tracks)

FY 2010/11: – Does H₂ see same surface area as N₂ and x-rays (next slide)?

- Etching of fission tracks; parametric studies of dependence on B conc. and parent material

Materials synthesis/performance II: B-doping & neutron irradiation (Aux)

Reaction		Product		B:C	Notes		
Char + KOH		3K		0.0 wt%	Reactor: stainless steel		
[ratio 1:3, 800)°C]				Product: ~1% Fe, Cr		
Char + KOH		3K*		0.0 wt%	Reactor: alumina		
[ratio 1:3, 800)°C]				Product: ~1% Al		
" $3K" + B_{10}H_{14}$	1	3 K-H 6	(II,A)	1.4 wt%	B-H decomp., 600 °C		(ĝ
" $3K^*$ " + B ₁₀ H	14	3K*-H	6 (II,A)	1.9 wt%	B-H decomp., 600 °C		(g/k
1 min irradiat	ion	3 K-H 6	(II,A)	1.4 wt%	$^{10}\text{B} + ^{1}\text{n} \rightarrow ^{7}\text{Li} + ^{4}\text{He},$		u
		Irr 1mi	n		+ long-lived	⁵¹ Cr	pti
2 hr irradiatio	n	3K*-H	6 (II,A)	1.9 wt%	$^{10}\text{B} + ^{1}\text{n} \rightarrow ^{7}$	Li + ⁴ He,	Isol
		Irr 2hr			< 1 μ Ci radioactivity		s Ac
Sample	p_0	p_{max}	$(n_{cr})^{-1/2}$	$^{3}\rho_{\rm film}$	$\Sigma_{\rm H2}$ (m ² /g),	E _{B av}	seo
1	(bar)	(bar)	(Å)	(g/cm^3)	Σ_{N2} (m ² /g)	(kJ/mol) ^a	ŵ
MSC-30	360	~40	3.1	0.11	2300, 2600	6.4	etric
4K (12/09)	270	33	3.4	0.08	2100, 2700	6.4	imé
3K-H6 (II,A)	300	~40	<mark>3.3</mark>	<mark>0.09</mark>	2200, ^b 3300	6.2 [10.9]	rav
3K-H6 (II,A)	160	23	<mark>4.1</mark>	0.05	<mark>3100, 3000</mark>	6.5 [11.2]	G
Irr 1min							
3K*-H6	190	24	<mark>3.9</mark>	<mark>0.06</mark>	2300, 2900	6.6 [11.3]	
(II,A) Irr 2hr							•
HS:2B	190	21	3.9	0.06	1200,600	6.9 [11.5]	Δ
H ₂ gas, 80 K & 50 bar	_	-	_	0.016	_	-	

^a) With ν for H₂-graphite potential [with ν estimated for H₂-B/C potential]

^b) Uncertain due to uncertainty in extrapolation to high pressure

- H_2 appears to see same surface area as N_2 in general, but area depends on 'footprint' of H_2 molecule
- FY 2010/11: Investigate pressure/temperature/sample dependence of footprint
- Density of adsorbed H_2 at 80 K & 50 bar is 3-8 times the density of H_2 gas

Materials synthesis/performance II: B-doping & neutron irradiation (Part 3)

Experimental determination of isosteric heats at medium-to-high coverage/pressure

- Except for very low coverages, compute isosteric heat from *absolute adsorption* instead of *excess*.
- Computer simulations provide required microscopic information on film volume and/or thickness.
- Product: isosteric heats valid at *all* pressures and coverages.

Materials synthesis/performance II: B-doping & neutron irradiation (Part 4)

Isosteric heat and binding energies

Comparison of $E_{B,av}$ energy from local max. of excess ads. with estimate of binding energy from isosteric heat

- B-doping raises binding energy to ~9-11 kJ/mol (conclusion supports theoretical results, see next slide)
- Binding energies from local max. of excess ads. agree, within exp. uncertainty, with those from isosteric heat
- Isosteric heat of irrad. material is incrementally higher than parent material

Ab initio + GCMC results for B-substituted carbon (Part 1)

pyreneB-variantof pyrene $Graphene \rightarrow E_a = 5.16 \text{ kJ/mol}$ B-variant $Graphene - B \rightarrow E_a = 7.8 \text{ kJ/mol}$ $Graphene - B \rightarrow E_a = 7.8 \text{ kJ/mol}$ $R_{H2-B} = 3.12 \text{ Å}$

- restricted open Hartree-Fock wavefunctions
- effective core potential SBKJC VDZ basis set + polarization functions (B,C: d; H: p)
- All the calculations were carried out using the GAUSSIAN 03 suite of codes.
- MP2 treatment more reliable than DFT (MP2 accurate within ~5%)

Minimal energies from ab initio calculations

"Additive" approximation: results for <u>B-doped graphene</u> (for B:C > 10%, need aromatic molecule larger than pyrene)

Ab initio + GCMC results for B-substituted carbon (Part 2)

Grand Canonical Monte Carlo Simulations -> adsorption isotherms

- Ab initio calculations of H₂ on boron-substituted carbon predict high binding energy. At 10% B, binding energy is raised from ~5 to ~10 kJ/mol (13.5 kJ/mol at small coverage, decreasing to 6 kJ/mol at high coverage). Is supported by experiments.
- <u>Reversible</u> (*delivery* ~ 97%) storage of H₂: ~5 wt.%, ~35 g/l, close to DOE 2015 targets (5.5 wt.%, 40 g/l) at room temperature and moderate pressures (100 bar), excluding support equipment.

Technical Accomplishments 9

Materials synthesis/performance III: excess adsorption and storage capacities at 80 & 300 K

Best performing material at 80 K:

• Excess adsorption (wt.%):

4K & 3K (B:C = 0).

- Reason: large surf. area, multilayer adsorption
- <u>Areal excess adsorption (g/m²):</u>

HS;0B (B:C = 0), at high P HS;2B (B:C = 1.7 wt%), at low P Both ~ twice "Chahine value" (HS;0B & HS;2B from another project)

Best performing material at 303 K:

HS;0B (B:C = 0), even though it has small $\Sigma \sim 700 \text{ m}^2/\text{g}$

3K close second, but with high $\Sigma \sim 2500 \text{ m}^2/\text{g}$

- Exceptional performance of HS;0B and HS;2B Record excess ads. of HS;0B at room temperature
- Can this be increased by further activation/pore-drilling?
- Hypothesis (80 K):
 - HS;0B: Very high $\rho_{\rm film}$ in smooth, <0.7 nm pores; low $E_{\rm B,av}$ (shifts $p_{\rm max}$ to high pressures)
 - HS;2B: High $\rho_{\rm film}$ in smooth, <0.7 nm pores; high $E_{\rm B,av}$ (shifts $p_{\rm max}$ to low pressures)
- B-doping raises E_{B,av}

Materials synthesis/performance III: excess adsorption and storage capacities at 80 & 300 K (Aux)

Best performing material at 80 K:

- In terms of gravim. storage cap.: 4K (B:C = 0). Reason: large surf. area, multilayer adsorption
- In terms of areal excess adsorption: HS;2B (B:C = 1.7 wt%) & HS;0B (B:C = 0) Both ~ twice "Chahine value"

Best performing material at 303 K:

- In terms of gravim. storage cap.: 3K (B:C = 0); H₂:C = 2.3 wt% at 100 bar
- In terms of areal excess adsorption: HS;0B (B:C = 0)
- ~ 4 times value of 3K

Storage capacities calculated with intragranular porosity of material

Sample	B:C	$\Sigma_{N2,77 \text{ K}}$	$\Sigma_{\rm H2, 80 K}$	Dominant	$G_{\rm ex}$	$G_{\rm ex}/\Sigma_{\rm N2, 77 K}$	Dominant $E_{\rm B}$
	(wt%)	(m^2/g)	(m^2/g)	pore size	(kg/kg, 80	$(\mu g/m^2, 80)$	(kJ/mol)
				(nm)	K, 50 bar)	K, 50 bar) ^a	
MSC-30	0.0	2600	2300	$0.7, 2.0^{b}$	0.056	21	8-10 ^d
4K (6/09)	0.0	2600	N/A	0.7-2.0 ^b	0.071	27	7-9 ^d
3K-H6 (II,A)	1.4	3300	2200	$0.7, 1.5^{b}$	0.049	15	<mark>9-11</mark> d
3K-H6 (II,A)	1.4	3000	3100	$0.7, 1.5^{b}$	0.047	16	<mark>9-11^{d,f}</mark>
Irr 1min							
HS;0B	0.0	700	N/A	0.8°	0.033	47	~9 ^e
HS;2B	1.7	600	1200	0.7°	0.020	33	>9 ^f
^a Chabine rule: 2	$0 \mu g/m^2$	^b Rim	dal °I	Inimodal	^d From ΛH	^e From G /S	f From n

^a Chahine rule: $20 \,\mu g/m^2$ ^b Bimodal ^c Unimodal ^d From ΔH ^e From G_{ex}/Σ ^f From p_{max}

This slide serves as supporting data for previous slide

Materials synthesis/performance IV: gravimetric vs. volumetric storage capacity

- Universal relation between V_{st} and G_{st}, parametrized by G_{ex}
- Volum. capacity can be increased significantly, with little loss of gravim. capacity, by decreasing the porosity of the adsorbent

Technical Accomplishments 11

Structural characterization of samples: SAXS & TEM

CONCLUSIONS

- Morphology from small-angle x-ray scattering (SAXS):
 - Results agree very well with N₂ sorption analysis (pore-size distribution, porosity)
 - Significant departures from "slit-shaped" pores: best fits of 3K and 4K SAXS: cylindrical pores
 - (AX-21 is ~slit-shaped)
- Transmission electron microscopy (TEM) of sample 3K consistent with SAXS results
- FY 2010/11: Investigate how different pore structures in our extensive library of carbons correlate with sorption characteristics (particular interest: pore structure of PVDC samples HS;0B and HS;2B).

Supporting Data

Structural characterization of samples: SAXS & N₂ adsorption (Aux)

Sample Porosity from N ₂ (ϕ)	N ₂ BET	Cylinder fit		Box fit		Gravimetric	Total	Gravimetric	Total	
	surface	(nomina	ominal		al	Excess	Amount	Excess	Amount	
	area	values) (Å)		values) (Å)		Adsorption	Stored	Adsorption	Stored	
	(\$)	(m ² /g)	Width	Length	Side A	Side B	(g/kg)	(g/kg)	(g/kg)	(g/kg)
3K	0.78	2500	6	19	3.5	13	68.6	97.5	6.6	13.7
4K	0.81	2600	6.5	24	4.4	12	71	106	4.9	12.7
AX-21	0.79	2600	5.5	26	4	12	55.7	90.5	4.7	13.1
3K-H6	0.78	3030	6	24			47.2	75.1	4.3	10.5
Irradiated										
							80 K at 50 bar bar		np at 50	

CONCLUSIONS

- SAXS: pore size and shape.
- SAXS: fractal analysis indicates formation of dendrites (B:C = 1.6%) and quasi-2D film (B:C = 6.9%).
- SAXS: insight how to improve H₂ sorption characteristics of activated carbons doped via B₁₀H₁₄.

This slide serves as supporting data for previous slide

Collaborations

- **Midwest Research Institute** (Private Sector): Subcontractor for design and construction of test vessel for monoliths, under conditions comparable to a full-fledged hydrogen tank.
- NREL (Federal): Validation of H₂ uptake data. [L. Simpson, P. Parilla, K. O'Neill]
- Advanced Photon Source/ANL (Federal): Ultra-small-angle x-ray scattering studies of samples under General User Program (GUP-10069, GUP-20661). [J. Ilavsky]
- **NIST** (Federal): Collaboration with Y. Liu and G. Brown on small-angle neutron scattering experiments on samples loaded with H₂, including density correlations of nonadsorbed H₂.
- U. Montpellier II and U. Marseille, France (Academic): Collaboration with L. Firlej and B. Kuchta to perform GCMC simulations.
- Wroclaw U. Technology, Poland (Academic): Collaboration with S. Roszak to obtain adsorption potentials for H₂ sorption on B-substituted materials from ab initio quantum-chemical computations.

Future Work: Plans for 2010/11

- Etch fission tracks in irradiated materials. Compare performance of etched/non-etched materials. Continue investigation whether H₂ and N₂ see same surface area, and of irradiation-induced increase in binding energy.
- Investigate pressure/temperature/pore-shape dependence of new variable ρ_{film} (T) (density of saturated film, "footprint" of H₂ molecule) experimentally and by GCMC simulations. Design materials with high ρ_{film} (T), as concurrent strategy with raising the binding energy
- Improve theoretical models for analysis of excess adsorption isotherms (*p*_{max}, *p*₀, ∂*G*_{ex}/∂*p*) in terms of *E*_B (multiple binding energies) and Σ_{H2}. Test for temperature independence of *E*_B and Σ_{H2}.
- Compare $E_{\rm B}$'s from $p_{\rm max}$, from experimental isosteric heats, and from GCMC simulations of isosteric heats, at 80 K and 300 K. Compare $E_{\rm B}$'s at 80 K and 300 K (should be same).
- Develop understanding of relation between H₂ storage at 80 K and 300 K.
- Expand experimental library of high *E*_B's from B-doping. Investigate performance of materials without exposure to air, as a function B concentration and thermal annealing. Extend QC calculations of, and GCMC simulations on, B-doped materials to higher B concentrations. Develop theoretical estimates of H₂-wall vibrational frequencies on B-doped materials.
- Attempt synthesis of bulk BC₃ and test for predicted H₂ intercalation (Cooper et al.)
- Manufacture monoliths and design test vessel for monoliths.

Project Summary

- Manufactured B-substituted carbon by thermolysis of $B_{10}H_{14}$, with B:C = 1-7 wt% and without compromising high surface areas.
- Demonstrated that B-substitution raises average binding energy to 9-11 kJ/mol (B:C = 1.4 wt%) and alters entire shape of adsorption isotherm (B:C = 1.7 wt%), consistent with theory. Ab initio calculations of H₂-(B,C) interactions and GCMC simulations gave E_B = 10-14 kJ/mol and gravimetric storage capacities of ~5 wt% at B:C = 10 wt%, 300 K, and 100 bar.
- Developed method to determine isosteric heats of adsorption at all coverages.
- Computational work helped understand unexpected variety of adsorption on materials.
- Found unexpected variations of saturated-film densities at 80 K. Resulted in increases of areal excess adsorption, more than twice the "Chahine value" of 20 μ g/m² at 77 K and 50 bar.
- Observed "pore drilling" by fission products from boron neutron capture. Irradiation significantly changed H₂ adsorption: increased binding energy and decreased film density.
- Developed universal relation between volumetric and gravimetric storage capacity, parametrized by gravimetric excess adsorption.

Material	Surface	Gravimetric	Gravimetric	Areal	Gravimetric	Gravimetric	B:C	Isosteric heat;
	area	excess ads.;	storage cap.;	excess ads.;	excess ads.;	storage cap.;	(wt%)	85 K, H ₂ :C =
	(m^2/g)	80 K, 50 bar	80 K, 50 bar	80 K, 50 bar	303 K, 100	303 K, 100		0.5 wt%, ~2
		(kg/kg)	(kg/kg)	(µg/m²)	bar (kg/kg)	bar (kg/kg)		bar (kJ/mol)
MSC-30	2600	0.056	0.086	21	0.0073	0.022	0	5.4
3K (6/08)	2500	0.069	0.091	27	0.011	<mark>0.023</mark>	0	6.7
4K (6/08)	2600	<mark>0.071</mark>	<mark>0.106</mark>	27	0.0048	0.020	0	6.1
3K-H6 (II,A)	3300	0.049	0.076	15	0.0065	0.018	1.4	<mark>7.5</mark>
HS;0B	700	0.034	0.040	<mark>47</mark>	<mark>0.013</mark>	0.015	0	TBD

• Best performing materials in project so far: