A Joint Theory and Experimental Project in the Synthesis and Testing of Porous COFs for On-Board Vehicular Hydrogen Storage

David Britt

Department of Chemistry Center for Reticular Chemistry UCLA

> Project ID ST022

This presentation does not contain any proprietary, confidential, or otherwise restricted information

June 9, 2010

Overview

Timeline

Project start date: 9/1/2008 (funded from 4/1/2009)

Project end date: 1/31/2013

Percent complete: 20%

Budget

Total project funding

- DOE share: \$1.38 M
- □ Funding received in FY09: \$400 K
- □ Funding for FY10: \$400 K

Barriers

Barriers addressed

- Improved gravimetric and volumetric density of hydrogen uptake
- Hydrogen capacity and fast kinetics at 77 K
- Improved hydrogen binding energy
- Synthetic scale up of COFs to cubic meters

Collaborating Partner BASE

Description of new materials

Covalent Organic Frameworks (COFs)

- □ Control of structure, topology, and interpenetration
- □ Lightweight materials
- Design of functionalities
- □ Suitable towards light metal impregnation
- □ High-throughput material discovery is applicable

Covalent Organic Frameworks (COFs)

High-pressure H₂ isotherms of COFs at 77 K

Surface excess mass

 H_2 uptake in 3D COFs is almost the same as that in MOF-177.

Objectives (FY09-10)

Room temperature H₂ storage in COFs to meet DOE 2015 Targets

- □ Synergistic work between Yaghi (UCLA) and Goddard (Caltech)
- Build high-throughput preparation setups for COF synthesis (high temperature and pressure)
- Develop chemistry to realize stable frameworks
- Introduce potential metal binding sites through the COF synthesis
- Determine atomistic connectivity of COFs using an *ab initio* charge-flipping method using PXRD data
- \Box Predict adsorption enthalpy of H₂ on various metal sites

Milestones (FY10)

- 1. Discover new COFs utilizing high-throughput methods and explore H₂ uptake properties of COFs in the same parameter range.
- Investigate pressure and temperature dependence of H₂ uptake in metalated COFs over the parameter range specified in DOE YR2015 guidelines (5.5 wt % and 40 g L⁻¹ up to 100 bar, -40/85 C). Compare with predictions from theory.
- 3. Develop new force fields for modeling adsorption properties of COFs. Test models using reported adsorption data for a range of known COFs.

Strategy

Improve the framework stability against impurity (e.g. water)

Introduce metal binding sites through the COF formation

J. Am. Chem. Soc., 2009, 131, 4570-4571

¹⁵N CP MAS

N₂ and H₂ isotherms for COF-300

Permanent porosity was observed. (BET SA = 1360 m²/g, pore volume = $0.72 \text{ cm}^3/\text{g}$) 1.1 wt% H₂ uptake at 1 bar and 77 K

Pore structure from low resolution PXRD data

ab initio charge-flipping method was applied to determine the pore structure with extracted intensities.

- Unit cell parameters are required.
- No information related to the connectivity and space group is necessary.

11

Imine-Linked porphyrin COF

NH₂

Type I isotherm implies a staggered stacking fashion.

Hydrazone condensation

- Contains imine and amide functionalities
- Obtained hydrazone chemically stable in water and basic conditions.
- Polyacylhydrazones have been prepared showing monomer exchange under mild conditions.
- □ Hydrazides are very easy to make.
- Potential metal binding sites

Building blocks

Typical example: COF-41

- Hot filtration & rinse with boiling dioxane & cold THF.
- **D** Distance between C_3 centers: 26.2 Å.

FT-IR	v (C=N) 1	v (C=N) 2
COF-41	1558	1273
Model	1550	1288

Expected pore size is large enough to hold metal complexes.

Proposed structure of COF-41

N₂ isotherm for COF-41

■ Presence of mesopore → enough space for metal impregnation

Activation procedure needs to be optimized

Future work: other building blocks (for 3D nets)

1,3,5-tris(4-formyl-phenyl)-benzene

4,4',4'',4'''-methanetetrayltetrabenzaldehyde

terephthalaldehyde

benzene-1,3,5-tricarbaldehyde

Coordination with theory: Examined model systems

- Four plausible model systems were tested.
- Calculated MO, U_{total} and H_{total} for each model.
- The DFT-MO6 functional was used to calculate the non covalent interactions with the basis set LACVP to calculate optimization.
- Adsorption enthalpy of these models is ranging from 3 to 4 kcal/mol (12-17 kJ/mol)

The binding energy is almost constant with the addition of H_2 .

 H_2 - H_2 interaction of the metal-complex is stable than that of the bipyridine system.

Configuration of 1H₂---Complex

The most favorable interaction is observed over the bond of N-Pt, which is the same as N-Ni system (Model #1).

Predicted binding energy is smaller than Model #1 (ca. 1 kcal/mol).

Approach 1: Proposed COF connectivity for metalation

Approach 2: Intercalation of COFs with metals

Eclipse stacking fashion can be utilized for metal intercalation.

Summary

Relevance: For room temperature hydrogen storage, a systematic survey was started experimentally as well as theoretically.

Approach: Aim at increasing strong binding sites for maximum hydrogen uptake capacity without losing pore volume.

Technical accomplishments and progress:

- Build high-throughput preparation setups
- Develop structural determination technique using *ab initio* chargeflipping method
- Synthesis of new COFs through hydrazone condensation
- Began modeling study for optimal binding energy

Technology transfer/collaborations: Active relationship with collaboration partners and BASF.

Proposed future research:

- Employ metals to create strong binding sites.
- Material design based on theoretical prediction.