Advanced, High-Capacity Reversible Metal Hydrides

Craig M. Jensen, University of Hawaii Sean McGrady, University of New Brunswick US DOE Annual Merit Review Meeting June 10, 2010

ST 031

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start Date: March 2005
- End Date: September 2010
- 95% complete

Budget

- Total project funding: \$2,945,058
 - DOE share: \$2,235,173
 - Contractor share: \$609,885
- Funding received in FY08: \$357,587
- Funding for FY09: \$285,173

Barriers

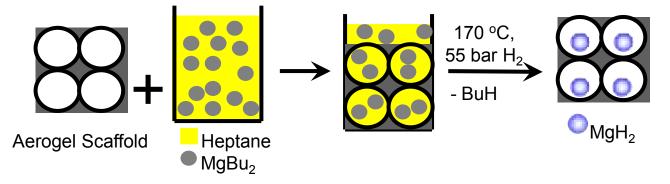
- A. System Weight and Volume
- E. Charging/Discharging Rates
- F. Thermal management
- P. Lack of understanding of hydrogen chemisorption and physisorption

Partners

- •E. Akiba, K. Sakaki; AIST
- •C. Ahn, S.J. Hwang; California Institute of Technology
- •T. Autrey , E. Ronnebro; Pacific Northwest National Lab
- •R. Cantelli; University of Rome
- •B. Hauback, M. Sorby; Institute for Energy Technology
- •H. Hagmann, R. Cerny; University of Geneva
- •L. Knight, G. Lewis, J. Low, A. Sachtler; UOP, LLC
- •R. Kuboto; KEK
- •R. Kumar; University of Nevada at Las Vegas
- •S. McGrady; University of New Brunswick
- •S. Orimo, Y. Nakamori; Tohoku University
- •I. Robertson; University of Illinois
- •T. Udovic; NIST
- •S. Srinivasan; University of South Florida
- -V. Stavila; Sandia National Laboratories
- •J. Vajo, P. Liu; HRL

Objectives and Relevance

Development of a new class of reversible complexes that has the potential to meet the DOE 2010 kinetic and system gravimetric storage capacity targets.


Current investigations include:

- $Mg(BH_4)_2$ nano-confined carbon aerogels.
- Reversible dehydrogenation of high capacity borohydrides at low temperatures.
- Development of a method for the hydrogenation LiH/AI to LiAIH₄ at moderate conditions in unconventional solvents.

Nano-confined AI and Mg Compounds in Carbon Aerogels

• Low temperature homogenous organometallic approach to incorporation of AI and Mg based hydrides into carbon aerogels results in unprecedented high loadings without degradation of nano-porous scaffold that occurs with melt intercalation.

• Determine the effects of nano-confinement on the kinetics and thermodynamics of the dehydrogenation of AI and Mg based hydrides.

Approach

Group I and II Salts of Anionic Transition Metal Borohydride Complexes

> Several potential improvements over neutral complexes:

- Higher (9-13 wt %) hydrogen content than neutral TM borohydrides.
- Ionic character reduces volatility and increases stability.
- Very low levels of diborane are evolved during the dehydrogenation

of some ionic complexes such as $Na_2Zr(BH_4)_6$.

> Altered thermodynamic stability might allow reversibility.

$Mg(BH_4)_2$

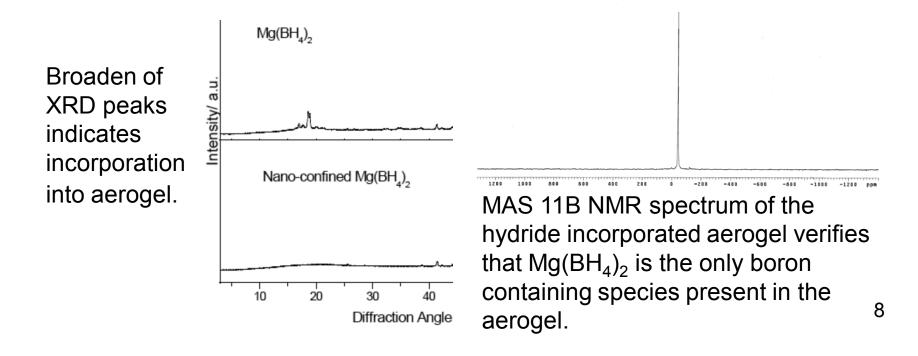
- > Mg(BH₄)₂ evolves **14 wt %** H₂ upon dehydrogenation.
- > Ball-milled MgB₂ undergoes full, reversible hydrogenation to Mg(BH₄)₂ at 400 °C and 900 atm.
- > Dehydrogenation has been found to be a multi-step process, can partial reversible dehydrogenation be accomplished under milder conditions.

Re-hydrogenation in Non-conventional Solvents

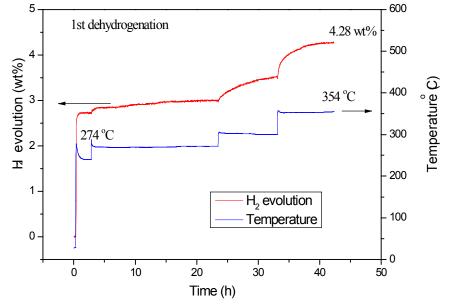
> Explore hydrogenation of AI to AIH₃; AI/MgH₂ to Mg(AIH₄)₂;and LiH/AI to LiAIH₄ in supercritical fluids and liquefied gases such as dimethyl ether which can form adducts during synthesis but are easily eliminated due to their high volatility.

Technical Accomplishments and Progress Nano-Confined Mg-Based Hydrides in Carbon Aerogels

Previous Results


- High, (9-16 wt % confirmed by TEM, EDS, and XRD) MgH₂ loadings of carbon aerogel without host degradation are obtained using the organometallic method.
- The rate of dehydrogenation at 252 °C is >5 times faster than the initial rate found for ball milled MgH₂ and comparable to those found for nano-confined MgH₂ in carbon aerogels by alternative methods at HRL. The rate remains the same over 4 cycles of dehyrogenation-rehydrogenation.

Technical Accomplishments and Progress Nano-Confined Mg-Based Hydrides in Carbon Aerogels

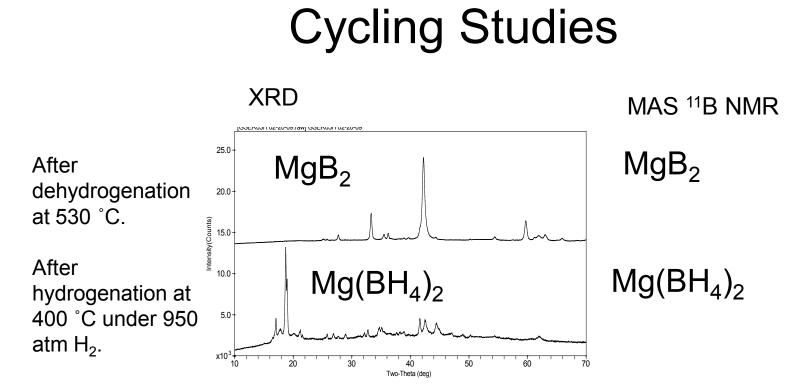

Synthesis of nano-confined Mg(BH₄)₂

Hydride incorporated into carbon aerogel through immersion in molten Mg(BH₄)₂·O(C₂H₅)₂. Diethyl ether adduct removed at 220 °C en vacuo.
60 wt% of Mg(BH₄)₂ is incorporated into aerogel.

Technical Accomplishments and Progress Nano-Confined Mg-Based Hydrides in Carbon Aerogels

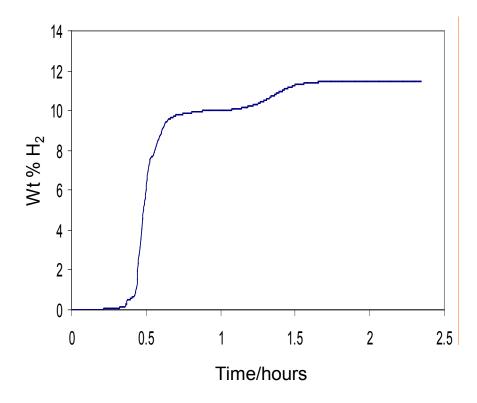
Improved kinetics observed for nano-confined $Mg(BH_4)_2$

Hydrogen is evolved at the rate of 0.1 wt%/min at 270 °C during the elimination of the first 4.0 H wt%. However, re-hydrogenation of the resulting MgB₂ under 120 atm at 220 °C gives rise to Mg($B_{12}H_{12}$)₂ as occurs with bulk Mg(BH_4)₂.


The ΔH_{dehyd} of 42 kJ/mole suggests that it should be possible to hydrogenate MgB₂ to Mg(BH₄)₂ at moderate temperatures and pressures. Findings of incomplete re-hydrogenation is apparently the result of the high kinetic stability of MgB₁₂H₁₂ intermediate.

First Demonstration of Full Hydrogen Hydrogenation

$$\begin{array}{ccc} & 900 \text{ atm } H_2 \\ \text{MgB}_2 & \xrightarrow{} & \text{Mg}(\text{BH}_4)_2 & \text{XRD, IR, MAS } ^{11}\text{B NMR} \\ & 400 \ ^{\circ}\text{C} \end{array}$$


Rönnebro, Jensen, and Severa US patent application U.S. Patent 12/553,633. Godwin Severa, Ewa Rönnebro, Craig M.Jensen; *Chemical Commun.* **2010**, *46*, 421.

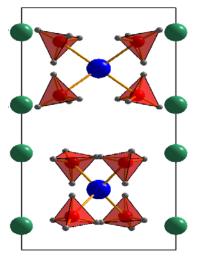
Cycling is mostly between MgB₂ and β -Mg(BH₄)₂. only minor amounts of MgO, MgB₂, and MgB₁₂H₁₂ are observed.

12 wt % Cycling Capacity

12 wt % hydrogen was obtained upon dehydrogenation at 530°C.

MgO arises during sampling, suggesting that 12.6 wt % hydrogen can be cycled.

Upon longer reaction times, higher levels of hydrogenation MgB₂ might lead to cycling of >14 wt % hydrogen.


Cycling Under Mild Conditions Collaboration with PNL

 $Mg(B_{12}H_{12})$ is a thermodynamic sink whose formation precludes the reversible dehydrogenation $Mg(BH_4)_2$ at moderate temperatures and pressures.

Orimo, S.; Nakamori, Y.; Ohba, N.; Miwa, K.; Aoki, M.; Towata, S.; Zuttel, A. *Appl.* Phys. Lett. **2006**, *89*, 21920. R.C. Bowman, Jr., J.W. Reiter, J.Rijssenbeek, G.L.Soloveichik, J.-C. Zhao, H. Kabbour, C. C. Ahn, J. Phys Chem. C **2008** *112*, 3164.

Mild conditions (**<200** °**C**, **<100** atm) have been found for the reversible elimination of 2.4 wt % hydrogen fromn Mg(BH_4)₂ which circumvent the formation of Mg($B_{12}H_{12}$).

 $LiSc(BH_4)_4$

H. Hagemann, M. Longhini, J.W. Kaminski, T.A. Wesolowski, R. Černý, N. Penin, M.H. Sørby, B.C. Hauback, G. Severa and C.M. Jensen J. Phys. Chem B. **2008**, *112*, 7551. R. Černy, G. Severa, D. Ravnsbaek, Y. Filinchuk, V. d'Anna, H.Hagemann, Y. Cerenius, C.M. Jensen, T.R.Jensen *J. Phys. Chem. C* **2010**, *114*, 1357.

 $NaSc(BH_4)_4$

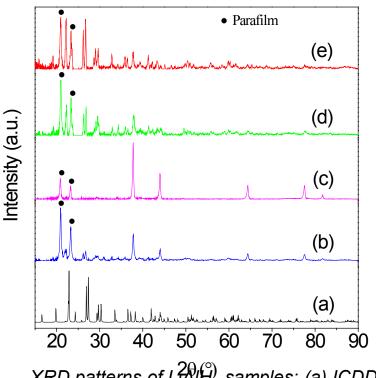
The **reversible** partial dehydrogenation of LiSc(BH₄)₄, NaSc(BH₄)₄ and KSc(BH₄)₄ can also be achieved under conditions found for Mg(BH₄)₄.

BACKGROUND

• Like sodium alanate, stepwise dehydrogenation, BUT first step is exothermic.

Step 1: $3\text{LiAlH}_4 \rightarrow \text{Li}_3\text{AlH}_6 + 2\text{Al} + 3\text{H}_2 \ \Delta \text{H} = -30 \text{ kJ}$

Step 2: $Li_3AIH_6 \rightarrow 3LiH + AI + 1.5H_2 \Delta H = 38 \text{ kJ}$


- Together steps 1 and 2 provide ~7.9 wt %H.
- Ashby (1963) thermodynamics altered by adduct formation, reversible in THF (high T and P).
- Ritter (2007) reversible in THF (high energy milling) with Ti catalyst. Requires material to be ball milled prior to each hydrogenation half-cycle.
- Graetz (2008) reversible in THF (low T and P) with Ti catalyst.
- THF removal requires heating to 60 °C for 6 h.Incompatible with Ti catalyst since dehydrogenation occurs at the temperature required for removal of THF.

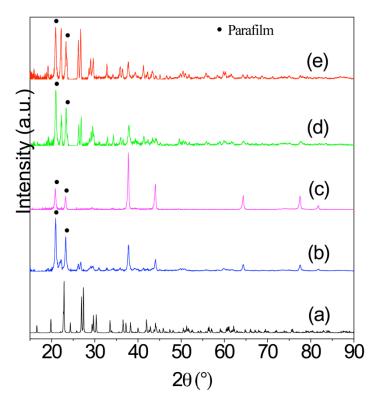
Using liquid dimethyl ether as solvent eliminates adduct removal issues

LiH + AI[Ti]

Me₂O/H₂ (100 bar) LiAIH₄[Ti] r.t.; 24 h

- Solvent vents immediately with H₂
- Fully charged Ti-doped LiAlH₄ obtained
- Very low levels of Ti can be used (~500 ppm)

XRD patterns of $L_{TA}^{20}(\overset{\circ}{H}_{4})$ samples: (a) ICDD ref; (b) ball milled (2.0 mol% TiCl₃); (c) fully de-H (0.2 mol% TiCl₃); (d) re-H (2.0 mol% TiCl₃); (e) re-H (0.2 mol% TiCl₃).



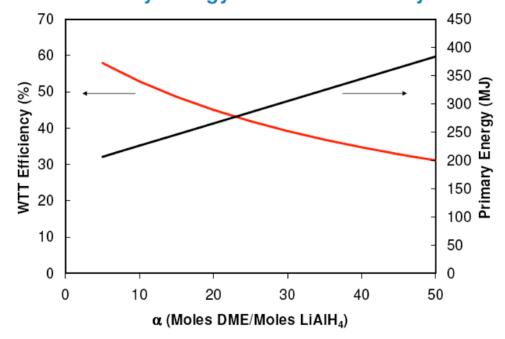
G.S. McGrady and C.M. Jensen U.S. Patent Application 60/945,650.

H₂ Desorption from Ti-Doped LiAIH₄

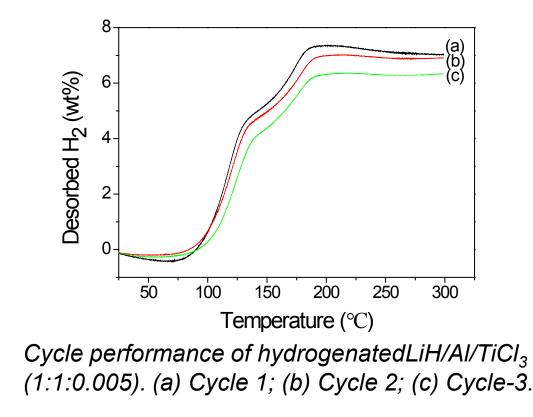
- 0.5-0.2 mol% Ti optimal
- ~7 wt% H at 80-180 °C
- Excellent kinetics

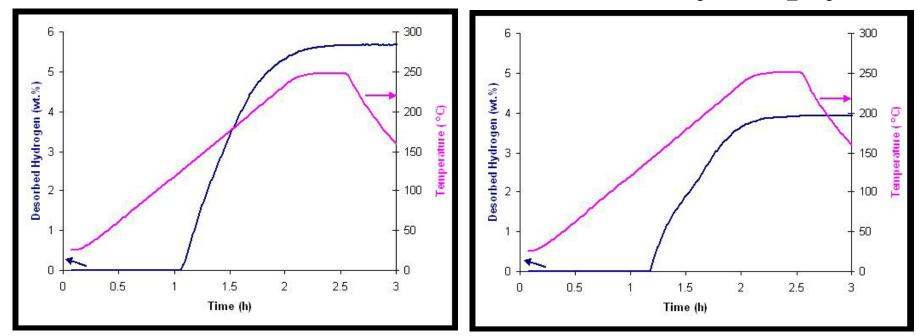
Xi. Liu, G.S. McGrady, H. W. Langmi, C.M. Jensen; *J. Am. Chem. Soc.* **2009**, 131, 5032.

TPD plots for LiAlH₄ samples: (a) as-received; (b) milled with 2.0 mol% TiCl₃; (c) re-H (2.0 mol% TiCl₃); (d) re-H (1.0 mol% TiCl₃); (e) re-H(0.5 mol% TiCl₃); and (f) re-H (0.2 mol% TiCl₃).



WTT energy efficiency approach 70% US DOE target for off-board recharging!


- Energy for compression of Me₂O and H₂ is ~ 1/5 that of H₂ production.
- High ~ 5M solubility of LiAlH₄ in Me₂O is the key in high efficiency.


Primary Energy and WTT Efficiency

Ti-doped LiAlH₄ shows a drop in capacity over several cycles due to formation of Ti_xAl_{1-x} phase.

Attempt to circumvent the formation of Ti_xAl_{1-x} phase we circumvented by doping with supported Ti (TiCl₃ on Al₂O₃)?

First Dehydrogenation Catalytic enhancement similar to that achieved with free Ti observed.

SecondDehydrogenation Hydrogen capacity lowered to >4 wt % and drops to zero after third cycle.

Future Work

Borohydrides

 Adjustment of conditions to maximize trade off between cycling capacity and temperature/pressures required for reversible dehydrogenation of Mg(BH₄)₂, LiSc(BH₄)₄, and NaSc(BH₄)₄.

Hydrogenation in Non-conventional Solvents

- Explore maintenance of cycling capacity of doped LiAlH₄ through variation of the dopants.
- Further evaluation of WTT efficiency of the DME/LiAIH₄ system to be examined in collaboration with Argonne National Lab.

Summary

Nano-confined Mg in Carbon Aerogels

- High, (60 wt %) loadings $Mg(BH_4)_2$ in carbon aerogel achieved using novel method.
- Nano-confinement of Mg(BH₄)₂ improves dehydrogenation kinetics but does not change the re-hydrogenation reaction pathway.

Borohydrides

- Demonstration of the reversible hydrogenation of MgB₂ to Mg(BH₄)₂ shown to cycle 12 wt% hydrogen.
- Mild conditions (<**200** °**C**, <**100** atm) have been for the reversible partial (2.4 wt %) dehydrogenation of Mg(BH₄)₂ as well as (~2.0 wt%) LiSc(BH₄)₄ and NaSc(BH₄)₄.

Hydrogenation in Non-conventional Solvents

- Fully charged, Ti-doped LiAlH₄ can be obtained in major yields from the direct hydrogenation of Ti-doped LiH/Al in liquefied dimethyl ether at room temperature under 100 bar of Me₂O/H₂.
- WTT efficiency of a LiAlH₄ based hydrogen system utilizing liquid DME as a re-hydrogenation medium approaches the 60% target.

Collaborations

Nano-confined Mg in Carbon Aerogels

- C. Ahn; California Institute of Technology (Academic): Characterization by TEM imaging.
- J. Vajo, P. Liu; HRL (Industrial): Characterization by PCT.
- X. Tang: UTRC (Industrial); Confinement in alternative scafolds.

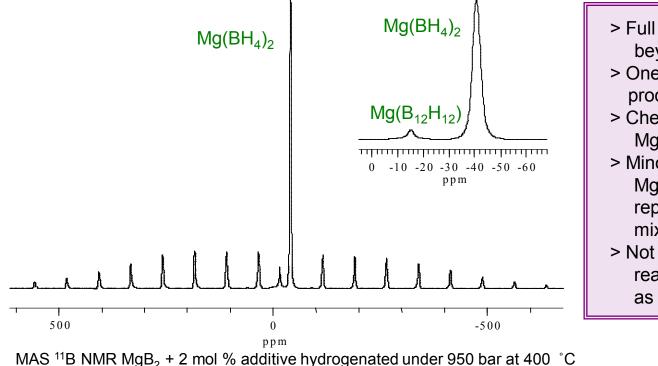
Anionic Borohydrides and Complex Hydrides

- E. Akiba, K. Sakaki; AIST, Tsukuba (Government): Characterization by positron annihilation.
- T. Autrey; PNNL (Government): Character by solution NMR analysis.
- R. Cantelli; University of Rome (Academic): Characterization by anelastic spectroscopy.
- H. Hagmann, R. Cerny; University of Geneva (Academic): Characterization by IR and Raman Spectroscopy and XRD.
- B. Hauback, M. Sorby; Institute for Energy Technology (Government, Norway): Characterization by Synchrotron X-ray and Neutron Diffraction.
- S-J. Hwang; R. Bowman California Institute of Technology, JPL (Academic, Government): Characterization by solid state NMR spectroscopy.
- L. Knight, G. Lewis, J. Low, A. Sachtler; UOP, LLC (Industrial): Characterization by XRD and mass spectroscopy. 23

Collaborations

Anionic Borohydrides and Complex Hydrides

- R. Kuboto; KEK, Tsukbua (Government): characterization by muon spin resonance.
- S. Orimo; Tohuku University (Academic): Characterization by DSC and XRD. Synthesis.
- I. Robertson; University of Illinois (Academic): Characterization by TEM.
- E. Ronnebro; SNL (now with PNNL), Government: High pressure studies.
- S. Srinivasan; University of South Florida (Academic): Characterization by DSC.
- V, Stavila; Sanida National Laboratory (Government); high pressure hydrogenation.
- T. Udovic; NIST (Government) Characterization by Inelastic Neutron Scattering.


Hydrogenation in Non-conventional Solvents

S. McGrady; University of New Brunswick (Academic): SCF reaction system.

Supplemental Slides

MAS ¹¹B NMR

- > XRD not generally used due the highly amorphous nature of boranes and bororhydrides.
- > MAS ¹¹B NMR spectroscopy allows detection and differentiation of all the boron containing species that are present.

- > Full Hydrogenation of MgB₂ beyond MgB₁₂H₁₂ to Mg(BH₄)₂
- > One major boron containing product is observed.
- > Chemical shift of -41 ppm: Mg(BH₄)₂.
- > Minor signal observed for MgB₁₂H₁₂, at -24 ppm, represents < 5% of product mixture.
- > Not clear if the catalyzed reaction pathway is the same as the uncatalyzed pathway.