

Discovery and Development of Metal Hydrides for Reversible On-board Hydrogen Storage

Mark Allendorf and Vitalie Stavila

Sandia National Laboratories June 10, 2010

Project ID: ST033

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline

- Project started in March '05
- Project end June 2010
- Percent complete 100%

SNL R&D Budget

- FY08 Funds: \$2.4M
- FY09 Funds: \$3.1M
- FY10 Funds: \$1.9M

Barriers

- A. System Weight & Volume, B. Cost, C. Efficiency, D. Durability
- E. Charge/discharge rates
- P. Lack of Understanding of Hydrogen Physisorption and Chemisorption

MHCoE Partners

BNL, JPL, NIST, ORNL, SRNL, Caltech, GA Tech, OSU, PITT, Stanford, UH, UIUC, UNR, UNB, Utah, HRL, UTRC

Collaborators

V. Ozolins (UCLA), J. Herberg (LLNL), Y. Filinchuk (ESRF), C. Wolverton (Northwestern), J-H Her (U. Maryland)

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US ² Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000

Technical POC and MHCoE Director: Lennie Klebanoff Core Technical Team

Mark Allendorf: Theory, Theory Group Coordinator
Eric Majzoub: PEGS theory, experiments (Sandia/UMSL)
Vitalie Stavila: New materials (borohydrides, ammine complexes)
Joe Cordaro: New materials (P materials, bulk syntheses)
Weifang Luo: New materials (Li-N-Mg-H materials)
P-containing materials

Other Key Contributors

Rich Behrens, Ida Nielsen

Ph.D. Students

Rebecca Newhouse, Leo Seballos (UC Santa Cruz), Godwin Severa (U. Hawai'i), David Peaslee (UMSL)

Undergraduate Student

Natchapol Poonyayant (Mahidol University, Thailand)

Discover, develop and validate "**reversible**" on-board metal hydride storage materials with potential to meet the DOE 2010 targets and a clear path to meeting the 2015 targets. Use theory-directed synthesis and characterization

Prediction of crystal structures:

- Prototype Electrostatic Ground State (PEGS) technique for structure predictions and rapid ΔH estimates
- ✓ First-principles Density Functional Theory (DFT) is used for accurate thermodynamics calculations

Synthesis/sample preparation:

- ✓ Solid-state and solution routes
- ✓ High-energy ball-milling (SPEX), cryo-milling
- ✓ Hot-sintering at high-P (600 C, 2000 bar)

<u>Understanding structural properties</u> / <u>Probing reaction</u> <u>mechanisms</u> / <u>Additives/dopants/catalysts modification</u>:

Powder/Synchrotron XRD, Neutron diffraction, STMBMS, PCT/Sieverts, Raman, FTIR, TGA/DSC, TEM, SEM, EDAX, EELS

Theory Status in June 2009:

- Established Multiphase Equilibria (MPE) Theory:
 - -- applied to LiNH₂ (+LiH); LiBH₄ /C
- Coordinated the MHCoE Theory Group (TG)
- ▶ Used PEGS to predict structures of LiSc(BH₄)₄, M-Ti(BH₄)_x, $[B_{12}H_{12}]^{2-}$
- > Predicted ΔH dehydrogenation for borohydride destabilized reactions

Theory Focus During FY09/10:

- > MPE Theory applied to $LiBH_4$ and the formation of $Li_2B_{12}H_{12}$
- > MPE Theory applied to $LiBH_4$ + MgH₂: Pressure-dependent mechanism
- > MPE Study of $2\text{LiNH}_2 + \text{C} \rightarrow \text{Li}_2\text{CN}_2 + 2\text{H}_2$, a rxn. predicted by MHCoE TG
- > Mg(BH₄)₂ + 2C \rightarrow MgB₂C₂ + 4H₂, another predicted destabilized Rxn.
- > PEGS studies of Ti(BH₄)₃, M[PB₂H₈]_x for M = Li, Na, K, Mg, Ca
- Continued Coordination of the MHCoE Theory Group

Phase equilibrium calculations can reveal complex hydride decomposition chemistry to better predict gas-phase and solid products...

Approach: DFT/Gibbs Free Energy Minimization

- Compute hydride thermodynamics
 - DFT: Ground-state energies (0 K)
 - PHONON: finite-temperature thermodynamics (C_p°, S°, ΔH°)
 - Fit C_p° to polynomial
- Compute equilibrium at constant T,P
 - FactSage package (commercial software)
 - Include all relevant gas- and solid-phase species:
 - Gas phase: JANAF Tables
 - B_xH_y B₁₀H₁₄
 - Li-B-C-Mg crystalline phases
 - Some liquids

 $C_p = a + bT + cT^2 + dT^3$

Polynomial fit to C_p for MgH₂. Data from DFT and phonon calculation

7

Sandia National

Laboratories

Representative MH systems considered to assess the importance of full-scale equilibrium

Gas-phase By-products Can Be

EXCELLENCE Very Important In MH H₂ Release Rxns U

MPE Theory Results Last Year:

- LiNH₂ (+ LiH): NH₃, N₂ formation; thermodynamic vs. kinetic products
- LiBH₄ + C: Hydrocarbon formation

MPE Theory Results This Year:

- LiBH₄: Li₂B₁₂H₁₂ intermediate formation
- 2LiNH₂ + C \rightarrow Li₂CN₂ + 2H₂, 31.4 kJ/mol H₂

• Mg(BH₄)₂ + 2C \rightarrow MgB₂C₂ + 4H₂, 43.1 kJ/mol H₂*

 LiBH₄ + MgH₂: Pressure-dependent mechanism*

R = 1: only H_2 forms R < 1: significant gas-phase byproducts

LiBH₄: condensed-phase intermediate formation

• Predicted overall reaction:

 $\begin{array}{l} {\sf LiBH_4} \rightarrow 1/12 ({\sf Li_2B_{12}H_{12}}) + 5/6{\sf LiH} + 13/12{\sf H_2} \\ (426{\sf K}) \end{array}$

- Small kinetic barrier suggested
 - 440 K onset Kostka et al., P_{tot} = 10⁻⁶ mbar
 - ~ 600 K Pinkerton et al., $P_{tot} = 1$ atm
- B_2H_6 formation:
 - Detected by Kostka et al. (JPCC 2007)
 - $-B_2H_6(g)$ is not stable; converts to B_xH_y
 - \rightarrow B₂H₆ probably not detectable at 1 atm
- Effect of nanoconfinement
 - Gross et al. no Li₂B₁₂H₁₂ (*JPCC* 2008)
 - $-Li_2B_{12}H_{12}$ stability reduced?
 - Alternati∨e kinetic pathway?

Carbon Destabilization: LiNH₂ + 0.5C

MHCoE TG Prediction (Alapati et al. (JPCC 2008))

 $2\text{LiNH}_2 + \text{C} \rightarrow \text{Li}_2\text{CN}_2 + 2\text{H}_2 \Delta U(0 \text{ K}) = 31.4 \text{ kJ/mol H}_2$

Reactions predicted by MPE Theory:

- $\text{LiNH}_2 + 0.5\text{C} \rightarrow 0.4\text{LiNH}_2 + 0.3\text{Li}_2\text{CN}_2 + 0.25\text{H}_2 + 0.2\text{CH}_4 \text{ (T < 350 K)}$
- $\text{LiNH}_2 + 0.5\text{C} \rightarrow 0.5\text{Li}_2\text{CN}_2 + \text{H}_2 \text{ (T > 350 K)}$

-- CH_4 predicted to be a major gas-phase by-product for H_2 release below 350 K

-- Li_2CN_2 +H₂ are predicted to be major products at T > 350 K, avoiding CH₄ formation

All Theory Milestones Are Complete

METAL HYDRIDE CENTER OF EXCELLENCE	II Theory Milestones Are Complete 🙃 Sandia			
Month/year	Milestone or Go/No-Go decision: Al-Adduct Theory, MPE Theory			
May-08 🗸	Milestone: Complete BAC calculations of alane-amine complexes			
Sep-08 🗸	Milestone: Complete BAC calculations on alane-adduct complexes			
Dec-08 🗸	No-go: Model reactions of alane-amine surface interactions			
May-09 🗸	Milestone: Complete calculations on alanate-amine complexes			
Sep-09 🗸	Milestone: Complete calculations on alanate-ether adducts			
Apr-10 🗸	Milestone: Evaluate gas-phase species formation in C-containing materials			
Jun-10 🗸	Milestone: Evaluate gas-phase species formation in B-containing materials			
Month/year	Milestone or Go/No-Go decision: Borohydride Theory			
Oct-09 🗸	Milestone: Complete PEGS searches for new high-H ₂ content mixed alkali-TM borohydrides			
Feb-09 🗸	No-go: Discontinue surfactant templating for nano-scale alanates/borohydrides			
Mar-10 🗸	Milestone: Complete PEG searches for new mixed cation alkaline-earth TM borohydrides			
May-10 🗸	Go/no-go: Discontinue alkali-TM borohydrides if no suitable materials found			

Status in June 2009:

- Completed Ca(BH₄)₂, made "downselect" decision (no further work)
- Synthesized and characterized ammine adducts of borohydrides
- Synthesized and examined *closo*-borates ([B₁₂H₁₂]²⁻) predicted by PEGS
- Initiated work on P-based hydrogen storage materials

<u>Final Year Goals:</u> Improve our understanding of high wt. % borohydrides, find new materials based on P and optimize 2LiNH₂/MgH₂ -- recommended by the MHCoE to the HSECoE as a preferred "near-term" material.

- Additive studies of Mg(BH₄)₂
- Destabilization of CaB₁₂H₁₂ with CaH₂
- Rehydrogenation of $Li_2B_{12}H_{12}$ and $Na_2B_{12}H_{12}$
- Hydrogen storage properties of P-containing metal hydrides
- Catalysis of 2LiNH₂/MgH₂ by KH and KNH₂
- Synthesized and characterized Ti(BH₄)₃ -- see additional slides

TiF₃/ScCl₃ Enhances H₂ Desorption from Mg(BH₄)₂

Desorption of $Mg(BH_4)_2$ ball-milled with 5mol % TiF₃ and 5mol% ScCl₃

- ➢ Small amounts of boron hydrides (15 58 amu) (<0.2wt%) are released</p>
- Other transition metal chlorides (Mn(II), V(III), Ni(II) and Cu(II)) alone or in combination with Ti(III) and Sc(III) salts were not as effective as TiF₃/ScCl₃
- > The transition metal additives generally degrade reversibility.

Understanding [B₁₂H₁₂]²⁻ Intermediates

 \longrightarrow CaB₆ + 6B + 6H₂ Δ H (0K) = 65 kJ/moleH₂; T(1bar) = 306 C $CaB_{12}H_{12}$ $CaB_{12}H_{12} + CaH_2 \longrightarrow 2CaB_6 + 7H_2 \Delta H = 38.6 \text{ kJ/moleH}_2$; T(1bar) = 86 °C -- predicted by Ozolins, Majzoub and Wolverton, JACS, 2009, 131, 230. $CaB_{12}H_{12} + CaH_{2}$ Experimentally, we see no -H₂ H_2 release from $CaB_{12}H_{12}$ heated to 700 C -6 CaB_c -8 $CaB_{12}H_{12} + CaH_2$ releases H_2 at ~ 500 °C -10 0 100 200 300 400 500 600 700 800 **T, ℃** The presence of CaH₂ decreases l (a.u.) **3** 40 the T required to release H_2 from a. CaB $CaB_{12}H_{12}$ by > 200 °C, in good 30 confirmed agreement with prior theory 20 We also see a slight destabilization 10 of $Li_2B_{12}H_{12}$ and $Na_2B_{12}H_{12}$ by MgH₂ 13

20

30

40

50

60

2 theta

70

80

90

100

p(H₂) = 70–90 MPa (>10,150 psi), t = 400–500 C, reaction time: 16–72 hours

[B₁₂H₁₂]²⁻ compounds can be converted quantitatively into borohydrides in the presence of the corresponding metal hydride at high H₂ pressure. *Conclusion confirmed by solid-state NMR (Caltech) and neutron vibrational spectroscopy (NIST).*

Bis(borano)hypophosphites are:

- Air and water tolerant
- Soluble in most organic solvents
- Form concentrated solutions/gels
- Theoretical Weight % of H_2 is 8-12 %

Gilmont, P. and coworkers, J. Am. Chem. Soc. **1940**, *62*, 717. Parry, R. W. and coworkers, Inorg. Chem. **1967**, *6*, 1761.

Previous synthetic methods used PH_3 , PH_3 -BH₃, or PH_4I as the source of phosphorus, which are dangerous precursors

We developed a safe route to M[PB]_x Na[PB], Na[PB]-d8, Li[PB], and Ca[PB]₂

Na[PB] Structure Understood Theoretically, Experimentally

- ~ 6 wt. % H_2 desorbed from the Na[PB] material
- Reasonable H_2 desorption temperature of ~165°C is observed
- Faster heating rates yield more endothermic melting, slower heating rates favor exothermic H₂ release.
- Attempts to rehydrogenate desorbed material have so far been unsuccessful

Simultaneous Thermogravimetry Modulated Beam

Mass Spectrometry (STMBMS):

Release of PH_3 and B_2H_6 combined with lack of reversibility lead us to downselect Na[PB], removing from further consideration.

W. Luo and S, Sickafoose, J. Alloys and Compounds, 407 (2006) 274-281 -- honored as a "Top Cited" paper by this journal in 2009

-- recommended by the MHCoE as a "near term" material for the HSECoE

> Potassium doping dramatically improves absorption rate.

 $> \Delta H_{des.} = 42 \text{ kJ/mole } H_2$

Proven reversible hydrogen capacity of 5wt%, 1wt% more than NaAlH₄

- > Excellent Cyclability: 264 cycles demonstrated, with 23% loss in capacity
- > Manageable NH₃ release (200 ppm at 180 °C), but needs improvement

More capacity possible with 1:1 LiNH₂/MgH₂ material, but need to improve pressure of 1st plateau region, cyclability

KH, KNH₂ Promote Absorption Kinetics of 2LiNH₂+MgH₂

Motivation: P. Chen *et. al.* show that KH can aid kinetics in Li-Mg-N-H systems (Angew. Chem. Int. Ed. 2009, 48, 1-5)

Our Work: Both KH and KNH₂ aid absorption kinetics (K⁺ catalytic agent)

-- results support prior work by Chen. et. al

Experimental Milestones Are Completed

20

Month/year	Milestone or Go/No-Go decision				
Jan-09 🗸	Milestone: Synthesize $Ca(BH_4)_2/NH_3$ system No-go: On further work on $Ca(BH_4)_2/NH_3$ system Milestone: Complete STMBMS characterization of $Ca(BH_4)_2$				
Mar-09 🗸	 Milestone: Lowering of Ca(BH₄)₂ desorption temperature No-go decision made on Ca(BH₄)₂ 				
June-09	Go/no-go: Continue with mixed $Ca_{(1-x)}M_x(BH_4)_z$ materials if reversibility has been shown at improved P and T compared to $Ca(BH_4)_2$: No-Go Decision Made				
Sep-09 🗸	Milestone: Incorporation of hydride material in catalyzed nano-frameworks				
Dec-09 🗸	Isolate and assess the $\rm H_2$ storage properties of new mixed cation alkali-TM borohydrides				
Dec-09 🗸	Synthesize and characterize $NaPB_2H_8$ and $LiPB_2H_8$.				
Jan-10 🗸	Complete mechanistic study of the hydrogenation/dehydrogenation of LiMgN				
Feb-10 🗸	Go/no-go on A-TM- $(BH_4)_x$: No-Go decision made on alkali transition metal borohydrides				
Apr-10 🗸	Characterize the H_2 desorption properties of modified $Mg(BH_4)_2$				
Apr-10 🗸	Determine the H_2 desorption properties of $NaPB_2H_8$ and $LiPB_2H_8$				
Apr-10 🗸	Synthesize and characterize $Mg[PB_2H_8]_2$ and $Ca[PB_2H_8]_2$				

Theory:

Gained a better mechanistic understanding of H_2 release and the role of impurity gas formation in high wt. % borohydride and amide materials:

$LiBH_4$, $LiBH_4/MgH_2$, $2LiNH_2/C$, $Mg(BH_4)_2/C$

Predicted MH structures, allowing DFT calculations of reaction thermodynamics:

 $\mathsf{Ti}(\mathsf{BH}_4)_3, \mathsf{Li}_2\mathsf{MgN}_2\mathsf{H}_2, \mathsf{LiPB}_2\mathsf{H}_8, \mathsf{NaPB}_2\mathsf{H}_8, \mathsf{KPB}_2\mathsf{H}_8, \mathsf{Mg}[\mathsf{PB}_2\mathsf{H}_8]_2, \mathsf{Ca}[\mathsf{PB}_2\mathsf{H}_8]_2$

Successfully Coordinated the MHCoE Theory Group

New Materials:

- Improved the desorption kinetics of $Mg(BH_4)_2$
- Developed a route for releasing H_2 from $B_{12}H_{12}$ compounds, confirmed prior theory
- Demonstrated hydrogenation of $Li_2B_{12}H_{12}$ and $Na_2B_{12}H_{12}$ at high H_2 pressure
- Successfully synthesized and characterized H₂ storage properties of NaPB₂H₈
- Confirmed remarkable catalysis of $2LiNH_2/MgH_2$ by KH and KNH_2
- Successfully synthesized and characterized $Ti(BH_4)_3$

Μ	HCoE Partr	ners:			
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	BNL: Caltech: HRL: GA Tech: JPL: NIST: OSU: SRNL: U. Hawai'i: U. Hawai'i: U. Illinois: UNR: U. Pitt: U. Pitt: U. Utah: UTRC:	J. Wegrzyn, J. Graetz SJ. Hwang, C. Ahn J. Vajo, P. Liu D. Sholl J. Reiter, J. Zan T. Udovic, U. Kattner JC. Zhao D. Anton, R. Zidan C. Jensen I. Robertson, D. Johnson D. Chandra K. Johnson Z. Fang X. Tang, D. Mosher, S. Opalka	ΟΑΑΑΑ	ther Collaborer ESRF: LLNL: Northwestern: UCLA: U. Geneva: U. Maryland:	Drations: Y. Filinchuk J. Herberg C. Wolverton V. Ozolins K. Yvon JH. Her

Additional Slides

2LiBH₄+MgH₂: pressuredependent mechanisms

- $P_{tot} = 1 \text{ atm } H_2 (2 \text{-step mechanism}):$
- $\text{LiBH}_4 \rightarrow 1/12(\text{Li}_2\text{B}_{12}\text{H}_{12}) + 5/6\text{LiH} + 13/12\text{H}_2$
- $Li_2B_{12}H_{12} + 6MgH_2 \rightarrow 2LiH+6MgB_2+11H_2$

100 atm H₂ (3-step mechanism):

- $\text{LiBH}_4 \rightarrow 1/12(\text{Li}_2\text{B}_{12}\text{H}_{12}) + 5/6\text{LiH} + 13/12\text{H}_2$
- $MgH_2 \rightarrow Mg + H_2 (782 \text{ K})$
- $Li_2B_{12}H_{12} + Mg \rightarrow LiH + MgB_2 + H_2$
- → Kinetic limitation to Li₂B₁₂H₁₂ determines decomposition
- → Li₂B₁₂H₁₂ is thermodynamically 'destabilized' in the presence of MgH₂

Alkali and Alkaline Earth Borano-hypophosphite

Stability Trends Assessed Using PEGS*-generated Crystal Structures

*E.H. Majzoub, V. Ozolins, Phys. Rev. B, **77**, 104115 (2008)

Highly-ordered Nano-porous Templates

Synthesis From Block-polymer And Cross-linked Phenolic Resins

Advantages:

- versatile and easily controlled mesostructure
- narrow pore size distribution
- large volumes: 0.8 cc/g
- tunable pore size: 2-20 nm
- resol polymer template OR
- carbon-only template
- variety of morphologies
- potentially monolithic

The PEO-to-PPO ratio increase

Meng, et al., Chem. Mater., 18, 4447-4464, (2006)

Templates are being used for $Mg(BH_4)_2$, $Ca(BH_4)_2$ infiltration

Developed Method to Convert $2LiNH_2/MgH_2$ into $2LiH + Mg(NH_2)_2$

Absorption kinetics of MgLi₂(NH)₂/KH

Initial pressure: 130 bar

KH aids the absorption kinetics of the 2LiNH₂/MgH₂ material system

Mg(BH₄)₂ Compositional Studies with SEM/EDX

34

MgB₂ almost exclusively formed upon heating up to 600 C Additives are distributed relatively uniformly throughout the boride sample

G.S. Girolami, Inorg. Chem. v45, p1380 (2006)

• Problems include poor reversibility, and gas-phase impurities (B_2H_6 / $H_2 \sim 1:100$).

35

- ~ 6 wt. % H_2 desorbed from the Na[PB] material
- Reasonable H_2 desorption temperature of ~165°C is observed
- Faster heating rates yield more endothermic melting, slower heating rates favor exothermic H₂ release.
- Attempts to rehydrogenate desorbed material have so far been unsuccessful

Melting and decomposition occur near the same temperature; more decomposition means less Na[PB] left to melt, smaller endothermic peak

* Simultaneous thermo-gravimetric modulated-beam mass spectrometer

This instrument, developed for our national security work, is used to study reaction kinetics of complex systems

Instrument details:

- Knudsen effusion cell installed within a furnace and upon a microbalance
- Simultaneous modulated molecular beam mass spectrometer provides time-dependent species info
- High accuracy FTMS for species identification

Data:

- Species
- Number density
- Rate of evolution
- Partial pressure
- Temperature

Data is correlated and analyzed to determine reaction processes and kinetics

Ref: R Behrens, Jr., Review of Scientific Instruments, *58(3), p451* (1987) YT Lee, *et al*, Review of Scientific Instruments, *40(11), p1402* (1969)

