Aluminum Hydride Regeneration

Jason Graetz, J. Wegrzyn, J. Johnson, Y. Celebi, WM Zhou and J. Reilly Brookhaven National Laboratory 06/10/2010

Project ID # ST 034

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: FY05
- Project end date: FY10
- 100 % complete

Budget

- Expected total project funding: – \$4.00M (DOE)
- Funding received in FY09
 - \$1.25M (DOE)
- Planned Funding for FY10 -\$800K (DOE)

Barriers

MYPP Section 3.3.4.2.1 On-Board Storage Barriers

- A. Weight & Volume
- B. Cost
- C. Efficiency
- D. Durability/Operability
- E. Charge/Discharge Rates
- **R.** Regeneration Processes

MHCoE Partners and Collaborators

- Project D (aluminum hydride) Lead
 UH-UNB, ORNL, SRNL, SNL
- Other collaborations: JPL, UIUC, ANL
- Chemical Hydride Center
- International Energy Agency (IEA)

Relevance: AIH₃

- High capacity: 10.1 wt% and 149 g/L

- Low decomposition enthalpy: $\Delta H \approx 7 \text{ kJ/mol H}_2 (\approx 1/5 \Delta H_{\text{NaAIH4}})$
- Rapid H₂ evolution rates at low T 2 Meets DOE target (0.02 gH₂/s) at 104°C (80 kW FC with 45% efficiency & 100 kg AIH₃)

 Decomposition rates can be tuned through particle size and coatings

– High purity H_2 - AIH₃ decomposes to AI and H_2 (no side reactions)

Challenge: AlH₃ not "on-board" reversible

Objective: Develop low energy pathway to regenerate AIH₃

NATIONAL LABORATORY

Approach

Objective: Meet 2010 DOE technical performance targets using kinetically stabilized aluminum-based hydrides (e.g. LiAlH₄ and AlH₃)

- Develop low-energy (≤73 kJ/H₂ or 30% of fuel energy) regeneration routes to prepare kinetically stabilized hydrides from the spent fuel
- 2. Assist the engineering design for an off-board system based on a kinetically stabilized hydride

Challenge: These hydrides are thermodynamically unstable at 300K

- 1. How do we control the H_2 evolution? One solution may be a pumpable slurry but how will this impact H_2 rates and capacity?
- 2. Can we regenerate these hydrides from the spent material using a low cost and low energy process?

Two-step approach to regeneration of AI-based hydrides:

Step I: Alane stabilization - Form stabilized alane complex by direct hydrogenation of catalyzed AI and complexing agent (e.g. amine) **Step II**: Remove stabilizing species and recover AIH₃

Accomplishments: Previous results

• Demonstrated a low-energy regeneration route for LiAIH₄:

 $\underset{\text{(spent material)}}{\text{LiH} + \text{AI}^{*} + 3/2\text{H}_{2} \xrightarrow{\text{THF}} \text{LiAIH}_{4}\text{-THF} \xrightarrow[4hrs]{60^{\circ}\text{C}} \text{LiAIH}_{4} + \text{THF}^{\uparrow}$

• Demonstrated the direct formation of AIH₃ from AI* and H₂ under mild conditions using amines: $C_7H_{13}N + AI^* + 3/2H_2 \rightarrow C_7H_{13}N-AIH_3$

• Preliminary results on H_2 evolution rates from AIH₃ in slurries

Accomplishments: New results

Revised regeneration procedure to incorporate transamination

Step 1: formation of NR₃-AIH₃ by direct hydrogenation

- Five alane adducts formed by direct hydrogenation under mild conditions (**complete** no longer investigating new adducts)
- Alane adducts also formed by reacting amine directly with alane
 Step 2: transamination exchange NR₃ for TEA
- Transamination demonstrated starting with DMEA and TMA (complete may need follow up to decrease time, temp., \dots)

Step 3: separation of TEA-AIH₃

- Separation of TEA-AlH₃ successful with \sim 70% AlH₃ recovery (additional optimization is necessary to improve yields)
- Ongoing effort to combine steps 1-3 and optimize yield and efficiency
- Well-to-tank efficiency estimates of 40-55% using this route with TMA (WTT target is 70%)

BROOKHAVEN

Step 1: Low pressure AIH₃ formation

Triethylenediamine (TEDA) alane:

 $C_6H_{12}N_2 + AI^* + 3/2H_2 \rightarrow C_6H_{12}N_2 - AIH_3$ P < 30 bar T = 300 K

Trimethylamine (TMA) alane:

 $2C_3H_9N + AI^* + 3/2H_2 \rightarrow 2C_3H_9N-AIH_3$ P < 230 bar T = 300 K

Quinuclidine alane:

 $2C_7H_{13}N + AI^* + 3/2H_2 \rightarrow 2C_7H_{13}N - AIH_3$ P < 60 bar T = 300 K

Hexamine alane:

 $C_6H_{12}N_4 + AI^* + 3/2H_2 \rightarrow C_6H_{12}N_4 - AIH_3$ P < 60 bar T = 300 K

Dimethylethylamine (DMEA) alane: $C_{4}H_{11}N + AI^{*} + 3/2H_{2} \rightarrow C_{4}H_{11}N-AIH_{3}$ P < 60 bar T = 300 K

Carbon Nitrogen

Aluminum

Step 1: Adduct Formation

- No success retrieving AIH₃ from any of the five alane amines synthesized by direct hydrogenation - adducts decompose upon heating
- Identified only one amine alane, triethylamine alane (TEA-AIH₃), that can be separated to recover pure α -AIH₃

$$\mathsf{TEA-AIH}_{3} \xrightarrow[3hrs]{70^{\circ}C} \mathsf{AIH}_{3} + \mathsf{TEA}^{\uparrow}$$

• TEA-AIH₃ cannot be formed by direct hydrogenation only by a direct reaction with AIH₃

 $C_6H_{15}N \quad + \text{AIH}_3 \rightarrow C_6H_{15}N\text{-}\text{AIH}_3$

...we found other adducts formed by same method: Triethylenediamine alane: $C_6H_{12}N_2 + AIH_3 \rightarrow C_6H_{12}N_2$ -AIH₃ Trimethylamine alane: $2C_3H_9N + AIH_3 \rightarrow 2C_3H_9N$ -AIH₃ Quinuclidine alane: $2C_7H_{13}N + AIH_3 \rightarrow 2C_7H_{13}N$ -AIH₃ Hexamine alane: $C_6H_{12}N_4 + AIH_3 \rightarrow C_6H_{12}N_4$ -AIH₃ Dimethylethylamine alane: $C_4H_{11}N + AIH_3 \rightarrow C_4H_{11}N$ -AIH₃

TEA-alane and transamination

 No success separating any of the five alane amines synthesized by direct hydrogenation - adducts decompose upon heating

• Triethylamine alane (TEA-AIH₃) can be separated to recover AIH₃

$$\mathsf{TEA-AIH}_3 \xrightarrow[3hrs]{70^{\circ}\mathsf{C}} \mathsf{AIH}_3 + \mathsf{TEA}^{\uparrow}$$

- Since it is the only amine alane that is easily separated, TEA-AIH₃ is a critically important compound for the regeneration process... ...but TEA-AIH₃ does not form by direct hydrogenation (from H₂)
- Can we use an exchange or **transamination** reaction to form AIH_3 -TEA from another amine alane (NR₃-AIH₃) that forms more readily?
- Possibly, but exchange is thermodynamically uphill so we need to maintain a high concentration of TEA and preferentially remove NR_3 to drive reaction
- Fortunately, TEA-AlH₃ has a low vapor pressure so all we need is an amine (NR_3) with a high Vp that forms a stable NR_3 -AlH₃ adduct: **TMA and DMEA**

Step 2: amine exchange (transamination)

FTIR confirms final product after transamination is TEA-AIH₃

Step 2: amine exchange (transamination)

FTIR confirms final product after transamination is TEA-AIH₃

Step 3: Separation of TEA-AIH₃

TEA-AIH₃ successfully separated at 70°C under vacuum (<100 mbar)
 Analysis of recovered AIH₃ (XRD and decomposition) suggests ~70% AIH₃ with 30% AI

Combining step 2 + 3: Separation of DMEA-AIH₃

• Analysis of recovered AlH₃ (XRD) suggests ~35% AlH₃ with 65% Al when steps 1 & 2 are combined

• Improvements expected with optimization & washes to remove unwanted material

Energy consumption for AIH_3 regeneration (per kg H₂ in AIH_3)

Process (TMA route)	Operating Conditions			Q, MJ	E, kWh
	T, ⁰C	P, bar	Reflux ratio		2,
Compress H ₂ from SMR to 30 bar	70	30			0.3
Compress circulating H_2 to 30 bar	70	30			0.6
Distill trimethylamine	65	5	1.0	28.6	
Distill ether	25	0.3	0.3	22.9	1.1
Decompose triethylamine alane	50	0.2		20.2	1.4
Vacuum dry alane product	50	10 ⁻⁴ - 10 ⁻¹		0.2	0.2
Total				71.9	3.6

- Without using wasted heat, well-to-tank (WTT) efficiency is 40.5%
- Using wasted heat for thermal energy increases WTT to 55%
- Target is 70% improvements possible by reducing excess H_2 , TMA and TEA, switching to gas flow (rather than vacuum) and using DMEA

Collaborations

MHCoE Project D - Aluminum hydride (Lead: Jim Wegrzyn, BNL)

Industrial Partnerships

We submitted a Navy STTR (N10A-T030) with Aspen Products to synthesize and characterize micron-sized AIH₃ particles for marine applications
 A number of companies are interested in using AIH₃ in portable power systems and have contacted us requesting material or information 15

Summary of Accomplishments

Goal: Develop and demonstrate a storage system that meets DOE targets using aluminum hydride as hydrogen fuel source.

Major accomplishments:

Step 1: Five pathways identified to form AIH_3 adducts from H_2 and AI

Triethylenediamine	$C_6H_{12}N_2 + AI^* + 3/2H_2 \rightarrow C_6H_{12}N_2 - AIH_3$
Quinuclidine alane:	$C_7H_{13}N + AI^* + 3/2H_2 \rightarrow C_7H_{13}N-AIH_3$
Dimethylethylamine alane:	$C_4H_{11}N + AI^* + 3/2H_2 \rightarrow C_7H_{13}N-AIH_3$
Hexamine alane:	$C_6H_{12}N_4 + AI^* + 3/2H_2 \rightarrow C_6H_{12}N_4 - AIH_3 \text{ promising}$
Trimethylamine alane:	$2C_3H_9N + AI^* + 3/2H_2 \rightarrow 2C_3H_9N-AIH_3$

Step 2: Transamination demonstrated with high yields for DMEA and TMA using dynamic vacuum and inert gas sweep methods **Step 3**: TEA-AIH₃ separated with ~70% recovered AIH₃

• ANL analysis of WTT efficiency suggests 55% possible with TMA route using waste heat

Proposed Future Work

• Improve and optimize regeneration pathways:

Pathway 1: AI + H₂ + TMA \rightarrow AIH₃-TMA $\stackrel{\text{TEA}}{\rightarrow}$ AIH₃ - TEA \rightarrow AIH₃ Pathway 2: AI + H₂ + DMEA \rightarrow AIH₃-DMEA $\stackrel{\text{TEA}}{\rightarrow}$ AIH₃-TEA \rightarrow AIH₃

- Regenerate AIH₃ with *E* penalty \leq 73 kJ/H₂ (70% Efficiency)
- Continue work with ANL to determine mass balance & energy cost for revised/improved regeneration method (TMA & DMEA)
- Continue investigation of alane slurries and liquid carriers develop procedures to tune AIH₃ particle size during regeneration
- Work with partners on safety and engineering of alane system

Supplemental Slides

Methods and Materials

 Ti catalyzed AI (AI*) prepared by first making AIH₃ with TiCl₃ in ether and then decomposing the ether adduct

 $3LiAlH_4 + AlCl_3 + 0.08TiCl_3 \xrightarrow{Et_2O} 3.24LiCl + 4AlH_3 \cdot Et_2O + 0.08Ti$

$4AlH_3 \bullet Et_2O + 0.08Ti \quad \begin{array}{r} 100 \ \circ C \\ 2 \ \overrightarrow{hrs} \end{array} \quad 4Al + 0.08Ti \\ \end{array}$

- Typical catalyst concentration was 2 mol % Ti
 - Recent results suggest reactions will work with much lower catalyst concentration
- Reactions performed in solvent medium: THF, Et₂O
 - Solvent acts as electron donor and helps stabilize AIH_x

