

Hydrogen Storage by Novel CBN Heterocycle Materials

Shih-Yuan Liu (Isy@uoregon.edu) Department of Chemistry, University of Oregon 2010 Annual Merit Review Washington DC, June 10, 2010 In partnership with the Chemical Hydrogen Storage Center of Excellence

Project ID: ST038

This presentation does not contain any confidential or otherwise restricted information

Overview

Timeline

start date: September 2008 end date: March 2012 percent complete: 40%

Budget

total project funding: \$1,440,614 DOE share: \$1,149,085 UO share: \$291,529

funding received: \$403,432 funding for FY10: \$200,000

Barriers

- A. system weight and volume
- C. efficiency
- E. charging/discharging rates
- R. regeneration process

Project Collaborators

THE UNIVERSITY OF

Prof. David Dixon

Pacific Northwest

Dr. Tom Autrey

Prof. Karen Goldberg Prof. Mike Heinekey

Key Summary

- A relatively new project as part of the CHSCoE.
- Focus on cyclic H₂ storage materials containing C, B, and N.
- New approach to H₂ storage that complements the materials currently under investigation.
- Couple *exothermic* H_2 desorption from *BN* with *endothermic* H_2 desorption from *CC* in a *cyclic* system to address reversibility.
- Strong collaborative effort with feedback loops between theory, synthesis, catalysis, and charge/discharge characteristics measurements.
- Progress: synthesized CBN heterocycle materials, demonstrated a pathway for regeneration of the spent fuel that includes using molecular H₂, developed a First-Fill synthesis, measured thermodynamic parameters that corroborate computational predictions, performed preliminary desorption studies.

Research in the Liu Group - Relevance

Project Objectives - Relevance

Develop CBN heterocycles as novel hydrogen storage materials:

- liquid-phase storage system
- gravimetric density
- volumetric density
- thermodynamics (H₂ absorption and desorption)
- cost effective and energy efficient regeneration (reversibility)

Specific objectives – Phase I (9/1/2008 – 3/31/2010):

- calculate thermodynamic properties of CBN heterocycle materials
- synthesize novel CBN heterocycle materials
- determine thermodynamic properties for CBN heterocycles via experiment

Phase II objectives (4/1/2010 - 3/31/2012)

- optimize the gravimetric density of materials
- develop a First-Fill synthesis
- develop/identify/optimize conditions for H₂ absorption (regeneration)
- develop/identify/optimize conditions for H₂ desorption (release)

The CBN Heterocycle Approach

• Spent fuel can potentially be directly regenerated with H₂.

Progress - Developing Synthetic Tools

Progress – Model for C₄BNH_x System

• Model and parent materials have similar thermodynamic properties.

successfully prepared several compounds related to the model material

determined density of select model material

d = 0.849 kg/L

ALABAMA

Progress – Hydrogenation Enthalpies: Theory vs. Experiment

Patrick Campbell

10

Progress – Facile Hydrogen Uptake

Patrick Campbell J. Am. Chem. Soc. 2010, 132, 3289-3291.

Progress – Regeneration Completed

Progress – Simple Regeneration using H_2 , H^- , H^+

- developed a simple three-step procedure for regeneration of spent fuel
- first synthetic access to the charged CBN fuel (Material (1))

spent fuel

charged fuel

• need to screen for milder reductants, e.g., transition metal hydrides, formic acid

Progress – First Fill Synthesis

7 steps, 9% overall yield

There is a need for a simple First-Fill synthesis!

Progress – First Fill Synthesis

Progress – Improving the Gravimetric Density of CBN Materials

synthesized a material with significantly improved storage capacity

17

synthesis of new metal catalysts based on the tridentate ligand motif

- Replace Ir with inexpensive metal
- Tune L, L', L' and X to achieve high activity and catalyst stability

Heinekey and Goldberg et al. J. Am. Chem. Soc. **2006**, *128*, 12048-9. J. Am. Chem. Soc. **2008**, *130*, 10812-20. Inorg. Chem. **2010**, *4*9, 1733-42.

Collaborations

Project Collaborators

WASHINGTON

computational studies of H_2 desorption pathways of cyclic CBN materials, evaluation of thermodynamics and energetics

experimental mechanistic studies of H_2 absorption/desorption to/from cyclic CBN materials, thermodynamic measurements using reaction calorimetry, H_2 charge/discharge characteristics

development/discovery of efficient catalysts for H₂ desorption from CBN materials

Technology Transfer

THE UNIVERSITY OF

obtained computed thermodynamic data and H₂ desorption reaction pathways for CBN heterocycle materials, will continue provide feedback with experimental data

obtained thermodynamic data via reaction calorimetry

prepared CBN heterocycle materials and delivered to UW for further investigation obtained preliminary H_2 desorption data

Proposed Future Work

- focus on developing CBN Materials (1) and (7)
- complete experimental thermodynamic data for CBN heterocycle materials for comparison with theory
- develop/identify/optimize conditions for H₂ desorption from these CBN materials
- determine charge/discharge characteristics
- develop more efficient regeneration of spent fuel
- formulate the charged fuel as liquids

Project Summary

- Relevance: development of novel hydrogen storage materials with desirable storage parameters and thermodynamics for reversible H₂ absorption and desorption
- Approach: coupling of exothermic H_2 desorption from BN with endothermic H_2 desorption from CC in a cyclic system to achieve optimal thermodynamics for H_2 absorption/desorption; distinct from amine-borane and cyclic materials currently under investigation

Progress:

- developed synthetic tools for CBN heterocycle materials
- measured experimental thermodynamic data that corroborate the values predicted by theory
- demonstrated regeneration of spent fuel material using $\rm H_2,\, H^{\text{-}},$ and $\rm H^{\text{+}}\, sources$
- developed a First-Fill synthesis of charged fuel
- performed preliminary H₂ release studies

Collaborations: active partnership with CHSCoE members (UA, PNNL, UW)

- Future Work: further develop the synthesis of CBN Heterocycle Materials (1) and (7)
 - complete experimental thermodynamic data for CBN materials
 - determine/optimize H₂ charge/discharge characteristics
 - develop more efficient regeneration of spent fuel