

Low-Cost Precursors to Novel Hydrogen Storage Materials

S. Linehan, N. Allen, B. Butterick, A. Chin, N. Kendall, L. Klawiter, S. Mancroni, D. Millar, D. Molzahn, S. November

The Dow Chemical Company June 10, 2010

Project ID #ST042

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline				Barriers		
	Start: Marc End: Sept Percent co	ch 1, 2005 ember 30, o mplete: 9	2010 00 %	System cost Regeneration processes – Cost – Energy efficiency – Environmental impacts		
	Budget			Partners		
	Total Funding	FY09 Actual	FY10 Budget*			
DOE	\$3,473K	\$945K	\$1,232K	LOS Alamos NATIONAL LABORATORY Pacific Northwest NATIONAL LABORATORY		
Dow	\$1,489K	\$405K	\$528K	Idaho National Laboratory		
Phase 2 DOE:Dow Split 70:30 Does not include DOE funding to INL (\$700K) in Phase 2			30 00K) in Phase 2			

Provide engineering support to guide Center's development of cost effective ammonia borane (AB) processes

- Identify key parameters impacting cost and energy usage
- Define opportunities for improvement

Reduce cost of NaBH₄ to enable lower cost ammonia borane

Approach/Milestones – Low Cost NaBH₄ for 1st Fill AB

	Identify Leading Pathways		Determine Feasibility of Leading Pathways		F	Detail Performance to Select Single Pathway		Develop Single Pathway
•	Develop screening and evaluation criteria specific to NaBH ₄ regeneration cycles	•	Demonstrate key chemical and process steps in laboratory studies	S	•	Establish complete material balance to determine intermediates and purification	· ·	Develop single NaBH ₄ process Confirm scalability
•	Review prior technical and patent literature Select leading NaBH ₄ regeneration		 Develop flow sheets and preliminary energy requirements and cost estimates for leading systems 		 requirements Demonstrate all chemical and process steps 		•	Update process flowsheets and economics
	theoretical energy efficiencies from reaction energetics and relevant metrics	٠	Sept 2007: No Go decision for NaBH ₄ as a storage material. Investigate low cost NaBH ₄ for 1 st fill AB.		•	Investigate scalability July 2009: Metal reduction selected over carbothermal for development		Current focus

Approach/Milestones – Engineering Analysis Methodology

Methodology developed for determining energy efficiency and delivered costs

H2A model used to develop economics

Results reviewed with TIAX; feedback incorporated

Accomplishments: First Fill Ammonia Borane

Metathesis of ammonium salt and MBH₄ in organic solvents

 $nNaBH_4 + (NH_4)_nX \rightarrow nNH_3BH_3 + Na_nX + nH_2$

Purdue: Ramachandran et al, Inorg. Chem, 2007, 46, 7810-7817

NaBH₄ + $\frac{1}{2}$ (NH₄)₂SO₄ $\xrightarrow{\text{THF}}$ NH₃BH₃ + $\frac{1}{2}$ Na₂SO₄ + H₂ (>95%) NaBH₄ + (NH₄)HCO₂ $\xrightarrow{\text{dioxane}}$ NH₃BH₃ + NaHCO₂ + H₂ (>95%)

Current analysis

→ PNNL: Heldebrant et al., Energy & Envir. Science, 2008, 1, 156-16 $NH_4CI + NaBH_4 \xrightarrow{NH_3}_{-NaCl} NH_4BH_4 \xrightarrow{THF}_{-H_2} NH_3BH_3$ (up to 99% yield) Base displacement of borane complexes with ammonia L-BH₃ + NH₃ → NH₃BH₃ + L Shore: WO2007/120511 A2

1st Fill AB: PNNL Route

PNNL Pressurized Route is Lower Capital than Low Temperature Option

Separations and solvent recovery dominate capital cost

Lower refrigeration demands favor moderate pressure option

PNNL Route Provides Numerous Benefits

	PNNL	Purdue			
Chemistry	NH ₄ BH ₄ decomposition	Metathesis			
Boron source	Sodium Borohydride				
Nitrogen source	Ammonium Chloride	Ammonium Formate / Sulfate			
Solvent	THF and NH_3	Dioxane or THF			
AB yield	99%	95%			
AB purity	99%	98%			
Reactor conditions	-70°C /1 atm or 25°C /20 atm.	40°C /1 atm			
Feed stoichiometry	Near-stoichiometric	50% excess NH₄ formate			
Raw material costs	NaBH ₄ principal component of costs				
	NH ₄ CI pricing well defined.	Low NH ₄ HCO ₂ pricing requires high volume			
Solvent requirements	>2M NaBH ₄ in solvent	1M NaBH₄ in solvent			
Solvent separation	Distillation column required to separate THF and NH_3 solvents	Single solvent – no solvent separation required.			
Na byproduct recovery	Relatively easy separations via solubility differences.	Separation of Na and NH ₄ salts requires more complex processing			
Waste generation	Minimal waste – only losses are small solvent losses.	Moderate liquid waste generated from insolubles processing step.			

Pressurized PNNL AB Process Provides Best Overall Cost and Performance

Base displacement of borane complexes with ammonia L-BH₃ + NH₃ \rightarrow NH₃BH₃ + L

High AB yields (>95%) and purities (>99%) reported for dimethylaniline borane (Shore)

- Effective means to produce BH₃ adducts needed
 - » NaBH₄ conversion to diborane and subsequent condensation in L
 - » NaBH₄ reaction with amine hydrochloride avoids diborane

 $L-HCI + NaBH_4 \rightarrow L-BH_3 + NaCI + H_2$

» Multi-step reactions involved - will not offer lower cost than PNNL route

Low-Cost NaBH₄ May Enable AB to Meet DOE Storage System Cost Targets

200 Dn-Board H $_2$ Storage System Cost, \$/kg H $_2$ 180 2 mol H₂ released / mol AB 160 \$4/kWh or 140 DOE 2010 Target \$133/kg H₂ 120 2.5 mol H₂ released / mol AB 100 80 * \$2/kWh or DOE 2015 Target * 60 \$66/kg H₂ 40 PNNL @ \$5 / kg NaBH₄ 20 0 3 6 9 12 15 18 21 24 27 30 0 AB 1st Fill Cost, \$ / kg AB

* Current storage system cost targets

\$9/kg AB (produced from \$5/kg NaBH₄) → **\$60/kg H₂ (for 2.5 mol H₂ released per mol AB)** Current fuel cost projection represents 45% of 2010 storage system cost target Current fuel cost projection represents 90% of 2015 storage system cost target (only 10% remaining for rest of system)

Accomplishments: Low Cost NaBH₄ for 1st Fill Ammonia Borane

Carbothermal Reduction of Borate

Approach

- Reproduce prior INL studies where NaBH₄ was produced
- Year 1 Go/No Go Milestone: INL experimental results should confirm a consistent plasma carbothermic conversion of borate to NaBH₄ of at least 40%
- Detail process window, separation / purification needs

Experimental - NaBH₄ formation remains elusive

- NaBH₄ has not been produced, but unidentified waterreactive material has
- Studies plagued by equipment issues & analytical challenges
 exact repetition of prior run conditions has proven difficult
- Extensive troubleshooting has failed to identify the same set of conditions under which NaBH₄ was produced

Year 1 Go/No Go Criterion Not Met

aho National Laboratory

No Go Decision for Carbothermal

Metal Reduction Selected for Development

 $NaBO_2 + 2CH_4 \rightarrow NaBH_4 + 2CO + 2H_2$

Metal Reduction of Borate

Recyclable process identified based on solid-solid reactive milling (highenergy laboratory mill)

- Good material balance
- Full accountability for all products
- No intractable by-products
- Isolation and purification steps identified

Identification of a <u>scalable</u>, solid-solid reactive milling technology has been met with challenges: low NaBH₄ yields

- Implications for the Metal Hydrides Center

Modeling Defines Reactive Milling Scaleup Challenges

Stress Energy Distribution during Milling

Discrete-element method modeling applied to obtain fundamental understanding of ball motions and particle collisions

Difficult to achieve sufficient milling energy in large scale mills (NaBH₄ volume to supply 10,000 MTA AB plant)

Slurry milling

- Scalable, but insufficient NaBH₄ yields

Solution-based approach

- Scalable with potential use of conventional reactors and unit operations
- All steps of reaction scheme demonstrated
- Focus on defining chemistry and process window for each reaction step
 - » Identification of byproducts
 - » Separation and purification needs
 - » Establish material balance

Solution-Based Metal Reduction: Results Point to Scalable Process

Alane formation step: 99+% yield

- Pressure, temperature, Al source, ligand, reaction medium

NaBH₄ formation step: 94% yield

- Pressure, temperature, B source, reaction medium

Product isolation and purification

- 99% NaBH₄ purity
- Separation scheme (crystallization, extraction, etc.)
- Full impurity profile characterization in progress (ICP, NMR, etc)

Recycle streams

- 97% ligand recovery, 99+% purity
- 99% recovery of aluminum by-product

Excellent Alane Formation Kinetics Obtained

Accomplishments: AB Regeneration

Hydrazine-based digestion and reduction Significantly simpler process compared to thiol/tin-based pathway Optimal regeneration path being identified by LANL :

Reaction basis being defined to proceed with cost analysis

Hydrazine usage likely to dominate cost and energy demand instead of regen operations

- Minimum requirement of 8:1 hydrazine:H₂ released (wt/wt)
- Current anhydrous hydrazine manufacturing routes energy intensive and costly
- New approaches to N_2H_4 will be needed for regeneration scheme to be viable

Chemistry steps and process options still being defined

Factored approach being pursued based on block flow diagram for cost estimate

AB regeneration processes

- LANL, PNNL: Experimental results input
- U Alabama: Thermochemical calculations
- Dow engineering guides Center development work

First fill AB process analysis

- PNNL: Experimental results input

Low cost NaBH₄ for 1st fill AB

- INL (sub-contractor): Carbothermal studies

Low Cost NaBH₄

- Refine process definition and development for solution-based alane reduction route
- Confirm recyclability
- Update flowsheets and economics
- Future work: conduct pilot studies to demonstrate fully integrated, scalable process

First Fill and Regen AB

- Early process analysis to ensure focus on cost-effective chemistries

Summary

AB First Fill

- Low cost NaBH₄ is key for producing 1st fill AB at cost required to meet 2010/2015 DOE hydrogen storage system cost targets.
- PNNL's moderate pressure AB route based on formation and decomposition of NH₄BH₄ provides best overall cost and purity/performance.
- At \$5/kg NaBH₄ price using new technology, PNNL route can produce AB on a commercial scale at about \$9/kg.

Low-Cost NaBH₄ for 1st Fill AB

- Attempts to reproduce 2007 carbothermal reduction of borate to NaBH₄ were not successful; No Go decision recommended
- Best scalable metal reduction process identified: solution-based alane reduction route
 - » Good yields and recoveries. Appears recyclable
 - » Currently defining process window, updating economics

AB Regeneration

– LANL's hydrazine-based pathway will need low cost hydrazine to be viable.