Ammonia borane regeneration and market analysis of hydrogen storage materials

David Schubert (PI), Duane Wilson (Presenter), Jonathan Owen, Larry Harrower

> U.S. Borax Inc. June 10, 2010

Project ID #ST043 Schubert

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start date: Oct 1, 2008
- End date: Sep 30, 2010
- Percent complete: 80%

Budget

- Total project funding
 - DOE: \$600K
 - Contractor share: \$347K
- Funding received in FY09: \$346K
- Funding for FY10: \$254K

Barriers

- Cost
- Efficiency
- System Life Cycle Assessment
- Regeneration

Partners

- Pacific Northwest National Lab
- Los Alamos National Lab

Relevance

Objectives

Regeneration: Need to maximize efficiency of off-board regeneration of ammonia borane fuel

- Need recyclable thermodynamically favorable intermediates
- Collaborate with PNNL and other Center partners to maximize efficiency of spent fuel regeneration
- Tune chemistry of borate esters as hydride acceptors in PNNL's cycle

Boron Resources: Understanding of global supplies of boron ore resources required for hydrogen storage

- Develop better understanding of global supplies of boron ore resources required for hydrogen storage
- Analyze impacts on borate industry, competing uses, and borate prices

Impact

- Results of collaboration expected to enable practical regeneration of ammonia borane fuel to meet needs of large automotive fleet
- Borate resource analysis is critically important to feasibility of chemical hydrogen storage as well as many proposed metal hydride systems

Milestones

- Q109-Q309: Synthesis of selected set of borate esters and borate resource analysis
- Q309-Q310: Digestion studies, regen cycle fine tuning and market impact analyses

Deliverables

- Analysis of global borate reserves and impacts of hydrogen storage technology deployment on market parameters, including competing uses and borate prices
- Synthesis of supply to PNNL of selected borate esters compounds and spent fuel digestion studies

Approach

Regeneration of ammonia borane (AB) spent fuel

NATIONAL LABORATORY

BORAX

Approach

<u>PNNL Gas Phase Calculations of Hydride Affinity</u> (- ΔH): BX₃ + H⁻ \rightarrow HBX₃⁻

- AB regeneration pathway requires spent fuel digestion intermediate having sufficient hydride affinity for reduction by metal hydride
- U.S. Borax targeted a large set of borate esters to supply to PNNL for experimental validation of theory and regen process
- Approach impacts likelihood of success of PNNL's regen system and validate theory

Approach validates theory and practical process 3 PhOH + B(OH)₃ \longrightarrow B(OPh)₃ + 3 H₂O

- Aryl borate esters were synthesized and their purity verified by NMR spectroscopy
- Analysis of these borate esters in collaboration with PNNL complimented and aided PNNL's computational work on regen models

<u>Fluoro</u>	<u>Chloro</u>	<u>Bromo</u>	<u>lodo</u>
2-F	2-CI	4-Br	4-I
3-F	3-Cl		
4-F	4-Cl	<u>Mixed</u>	
2,3-F	2,3-CI	2-F,4-Br	
2,4-F	2,4-Cl	2-F,4-CI	
2,6-F	2,6-Cl	2-F,6-CI	
3,4-F	3,4-CI	3-F,4-Cl	
3,5-F	3,5-CI		
3,4,5-F	2,4,5-Cl		
2,3,4,5,6-F	2,4,6-Cl		

A library of 25 high purity borate esters have been synthesized to enable a more thorough understanding of substituent effects on ester properties

Technical Accomplishments – Regen Studies

 $Et_3PO + B(OPh)_3 \iff Et_3PO - B(OPh)_3$

Phosphine oxide – ester adducts were synthesized to measure acceptor numbers

- Acceptor numbers were measured from NMR data (Δδ³¹P) of each adduct
- An acceptor number is a measure of Lewis acidity – an indicator of hydride affinity

Technical Accomplishments – Regen Studies

 Three effects of halogen substitution on the Lewis acidity of aryl borate esters were elucidated

Lewis Acidity by Substituent:

Identity: $Br > Cl \ge l > F > H$ Quantity:5 > 3 > 2 > 1 > 0Position:2 > 3 > 4

These factors are in agreement with and validate PNNL computational models

 An additional effect on the measured Lewis acidity is the steric effect

- With substituents in both 2 and 6 positions, the measured Lewis Acidity is much greater than PNNL computational models predict
- Substitution at both the 2 and 6 positions was found to hinder adduct formation, while substitution at only the 2 position did not

These effects are key to tailoring aryl borate esters with desired properties to optimize the metal hydride reduction step of PNNL's proposed regen cycle

Technical Progress – Regen Studies

- Recent efforts have shifted to producing borate esters from spent fuel (SF), requiring a large, well characterized batches of SF
- U.S. Borax has safely produced SF (>5 g) from 10-g amounts of ammonia borane
- Through direct methods of analysis two types of SF have been characterized:

 $\frac{\text{SF produced in absence of oxygen}}{N_{0.97}H_{1.20}BH_{0.56}O_{0.23}} \\ N_{1.07}H_{0.84}BH_{0.43}O_{0.19}}$

 $\frac{SF \text{ produced in absence of oxygen and water}}{N_{1.09}H_{0.87}BH_{0.41}O_{0.10}}$ $N_{1.12}H_{0.84}BH_{0.46}O_{0.092}$

Batches of spent fuel have been made and characterized with Analytic Support provided to PNNL

U.S. Borax Inc. borate mine at Boron, California

Important borate minerals

Tincal $Na_2B_4O_7 \cdot 10H_2O$

Kernite Na₂B₄O₇•4H₂O

Ulexite NaCaB₅O₉•8H₂O

Colemanite Ca₂B₅O₈•5H₂O

10

Progress: Borate Reserves and Chemical Hydrogen Storage

Technical Progress – Resource Analysis

Collaborations

Pacific Northwest National Laboratory (PNNL)

The project has involved extensive collaboration with PNNL:

- Experimental samples prepared at U.S. Borax were supplied to PNNL for further testing
- U.S. Borax personnel spent time working at PNNL during 2009 to carry out project critical experiments
- Regular technical discussions have been held between U.S. Borax and PNNL staff members throughout the course of this project
- Los Alamos National Laboratory (LANL)

This project also involved consultation with LANL staff members

Proposed Future Work

Resource Analysis

- Further refinement of boron global reserve data
- Further analysis of important questions regarding industry impacts of hydrogen storage technologies and market parameters, including:
 - Impacts on borate manufacturers
 - Impacts on competing uses
 - Impacts on borate prices

Regen Studies

- Spent fuel digestion studies
- Regen cycle validation in collaboration with PNNL

Other Activities

- Analytical Support
- Safety Consultation

Project Summary

- **Relevance:** (1) Collaborated with partners to optimize practical regeneration pathways for ammonia borane (AB) hydrogen storage fuel
 - (2) Quantified boron raw material resources required for hydrogen storage
- **Approach:** (1) Synthesized extensive set of borate esters to serve as prototype AB regen intermediates to validate theory. Done in collaboration with PNNL

Progress: (1) U.S. Borax has supplied a large set of pure borate esters to PNNL for testing

- (2) Large batches of spent fuel have been made and characterized
- (3) Analytic support provided to PNNL for spent fuel characterization
- (4) Digestion studies have been initiated
- (5) First order estimation of U.S. and global borate reserves completed, taking into account consumption by competing applications through initial fill timeframe

Technology Collaborations: PNNL, LANL

Proposed Future Research:

- (1) Spent fuel digestion studies and regen cycle validation
- (2) Further refinement of boron reserve data and analysis of impacts of hydrogen storage on competing uses and prices

David Schubert, Ph.D.

303-713-5226 david.schubert@borax.com

U.S. Borax Inc. Greenwood Village, Colorado

