SRNL Technical Work Scope for the Hydrogen Storage Engineering Center of Excellence

Design and Testing of Metal Hydride and Adsorbent Systems

Bruce Hardy

SRNL Transport Phenomena Tech Area Lead

Richard Chahine Director Hydrogen Research Institute UQTR

Theodore Motyka

Assistant Director and SRNL Project Lead

Stephen Garrison SRNL Tech Team Lead David Tamburello SRNL Tech Team Lead Claudio Corgnale SRNL Transport Phenomena

Savannah River National Laboratory

June 8, 2010

Project ID#ST044

This presentation does not contain any proprietary, confidential or otherwise restricted information

Overview

Timeline

•Start: February 1, 2009

- •End: July 31, 2014
- •20% Complete (as of 3/31/10)

Budget

- •FY 09 Funding: \$888,945*
- •FY10 Funding: \$1,640,000*

* Includes \$241,200/\$360,000 for the University of Quebec Trois Rivieres (UQTR) as a subrecipient for **FY09/FY10**

Barriers

- System Weight and Volume
- H₂ Flow Rate
- Energy Efficiency

Partners

Relevance: Transport Phenomena Within the HSECoE

HSECoE

Transport Phenomena provides the modeling and analysis required for prototype design, along with interpretation and scaling of prototype data

Relevance: Phase 1 Objectives – Transport Phenomena

Collect and Assimilate Property Data for Metal Hydrides and Adsorbents

- Kinetics data and kinetics models a.
- b. Thermal and mass transport data

- c. Evaluate completeness of available data
 d. Propose experiments to obtain missing data
 e. Interface with MHCoE and independent projects

Collect Operational Data for Storage Vessel Configurations

- Heat transfer a.
- b. Mass transfer
- c. Identify additional data required

Develop General Format for Models

- a. Suitable for sensitivity/scoping studies and detailed analysesb. Metal hydrides and adsorbent models to be developed by SRNL/UQTRc. Chemical hydride models to be developed by PNNL and LANL

Assemble and Test Models

- Conduct preliminary validation
- **Develop "Acceptability Envelope" of Media Characteristics** Based on 2010 & 2015 DOE Technical Targets a. Determine whether candidate <u>metal hydrides</u> have characteristics lying
 - within the "acceptability envelope"

Principal Objectives:

- **Development of an "Acceptability Envelope" for metal** hydride properties
- Develop numerical models for system optimization and sensitivity studies

Technical Accomplishments: 0-D MathCAD[®] Kinetics Model for Metal Hydrides

Approach: Physics for Integrated Metal Hydride Models

HSECoE

H

$$\begin{array}{l} \underbrace{\operatorname{NaAIH}_{4}}{\operatorname{Conservation of Mass (Hydrogen)}}\\ \underbrace{\operatorname{Ac}}{\operatorname{C}}_{dt} + \nabla \cdot \left(C \overline{v} \right) = \left(\underbrace{S_{H_{1}}}{\varepsilon} \right) \\ \\ \\ \hline \\ Conservation of Momentum (Blake-Kozeny Equations) \\ u = -\frac{D_{p}^{2}}{150\mu} \left(\frac{\varepsilon}{1-\varepsilon} \right)^{2} \frac{\partial P}{\partial x} \\ v = -\frac{D_{p}^{2}}{150\mu} \left(\frac{\varepsilon}{1-\varepsilon} \right)^{2} \frac{\partial P}{\partial y} \\ \\ w = -\frac{D_{p}^{2}}{150\mu} \left(\frac{\varepsilon}{1-\varepsilon} \right)^{2} \frac{\partial P}{\partial z} \\ \\ \hline \\ \hline \\ Conservation of Energy in Bed \\ \rho_{bed} C \rho_{bed} \frac{\partial T}{\partial t} - \nabla \cdot k \nabla T = -\varepsilon \rho_{H_{1}} C \rho_{H_{1}} \left(\frac{\partial T}{\partial t} + \overline{v} \cdot \nabla T \right) \\ \\ + \left(\frac{\partial P}{\partial t} + \varepsilon \overline{v} \cdot \nabla P \right) - \left(\sum_{i} \left[\frac{1}{M_{i}} \frac{\partial \rho_{i}}{\partial t} \Delta H_{i} \right] \right) \\ \\ \hline \\ Plus Non-Ideal Hydrogen Equations for Physical processes, Ancillary Equations, etc. !!! \\ \end{array} \right]$$

Approach: Sample Geometric Representation - Metal Hydride Model

This is a specific example. The generalized FEM model can be applied to any geometry and set of thermal properties.

Sample Geometry Used in 3-D Model

Approach: Unit Cell Model for Heat Removal Scoping Studies

Symmetry assumed

- Each tube independent
- End effects neglected (Assumed 2-D)
- Axially symmetric

Spatially uniform H₂ pressure assumed

Explicit representation of fin and tubes

Media-metal thermal contact resistances explicitly included

Conditions (Adjustable)

- NaAlH₄ + 4%TiCl₃ kinetics parameters
- 50 bar H₂ feed pressure
- 100 C cooling fluid

Optimized Parameters (Use Matlab[®]-Comsol[®] Interface)

- Cooling tube (inner) diameter
- Cooling tube thickness
- Tube (horizontal) spacing
- Fin thickness

HSECoE

• Fin-Fin (vertical) spacing

Grid or Nelder-Mead (Downhill Simplex) Optimization

Technical Accomplishments: Systematic Optimization Method

Store 1 kg of hydrogen in 12 min. (720s) 50 bar feed pressure; NaAlH₄+4%TiCl₃

	Nelder-Mead
Cooling tube ID:	0.085 in
Cooling tube	
thickness:	0.020 in
Fin length:	0.296 in
Fin thickness:	0.004 in
Fin-Fin spacing:	0.220 in

Number of units:	126050	
Media mass:	126 kg	
Heat exchanger mass:	17 kg	
Heat exchanger vol. %:	3.4%	

HSECoE

Technical Accomplishments: Novel Concepts

Longitudinal Fins

Symmetry assumed

- Each tube independent
- End effects neglected (Assumed 2-D)
- 60 wedge

Spatially uniform H₂ pressure assumed

Explicit fin and tubes

Media-metal thermal contact resistances included

Conditions (Adjustable)

- 50 bar H₂ feed pressure
- 100 C cooling fluid

Advantages

Media Packing

- Disadvantages
 - Construction Cost

Metallic Honeycomb Structure

- Symmetry assumed (30°)
- Axial hydrogen injection at 50 bar
- Contact resistance not considered

Progress: Summary and Current Results for Metal Hydrides

Developed and validated baseline Comsol[®] models for metal hydride storage systems

Incorporated improved models into optimization routines

- With given constraints optimal designs require very small spacing of HX surfaces
- Methods easily extendable to new systems
 - New hydrides
 - New catalysts for NaAlH₄
 - Adsorbent systems
 - New tank designs

Principal issues for design of metal hydride based storage systems

- Variations in powder composition and catalyst material
 - Large impact on the charging and discharging kinetics
 - Large impact on capacity
- Substantial increase (x50) in NaAlH₄ kinetics required to meet 2010 DOE target for refueling time
 - Heat removal becomes an issue for ΔH associated with most metal hydrides
- Short refueling times for NaAlH₄ (e.g., 4.2 min. versus 15 min) impact
 - System gravimetric capacities
 - System volumetric capacities

HSEC

Proposed Future Work : Metal Hydrides

Depends on Results from "Acceptability Envelope"

More Detailed Modeling in Scoping Studies

- Consider mass transfer limitations
- Include hydrogen stored in gas phase
- Include cooling at tank wall/surface
- Identify minimum coolant tube thickness
 - Dependent on operating pressure and tube internal diameter
- Use appropriate convection heat transfer coefficient in coolant tube
 - Dependent on coolant tube internal diameter & coolant flow rate
- Consider pressure vessel mass
 - Important for hybrid (high pressure) storage

Evaluate Novel Concepts

- Longitudinal and other fin configurations
- Metal honeycomb structures
 - Cell size
 - Addition of cooling channels

Approach: Adsorbent Models – MaxSorb® (AX-21®)

- Solves conservation equations for mass, momentum, and energy in 2 or 3 dimensions
 - Uses weakly compressible Brinkman equations in all flow domains
 - Includes thermal radiation
 - Temperature dependent fit for carbon specific heat
 - Correlations for non-ideal hydrogen properties from NIST REFPROP 23 V8.0 database
 - Valid for $0.05 \le P \le 35.0$ MPa and $70 \le T \le 450$ K
 - Compressibility factor
 - Enthalpy
 - Viscosity
 - Thermal conductivity
- AX-21[®] thermodynamic models for absolute adsorption and internal energy of adsorbed hydrogen obtained from:
 - Richard, Bénard and Chahine. "Gas Adsorption Process in Activated Carbon Over a Wide Temperature Range Above the Critical Point. Part 1: Modified Dubinin-Astakhov Model."
 - Richard, Bénard and Chahine. "Gas Adsorption Process in Activated Carbon Over a Wide Temperature Range Above the Critical Point. Part 2: Conservation of Mass and Energy."

Technical Accomplishments: Adsorbent Scoping Model

- Unit cell
 - Half-thickness of fin & media
 - Central coolant channel
- Energy balance only
 - Prescribed pressure transient
- Executes quickly

Optimized Parameters (Use Matlab[®]-

Comsol® Interface)

- Cooling tube (inner) diameter
- Cooling tube thickness
- Tube (horizontal) spacing
- Fin thickness
- Fin-Fin (vertical) spacing
- Analogous to SRNL heterogeneous cell metal hydride scoping models
- Suitable for large number of runs
 - Matlab[®] systematic optimization on a number of design parameters

Technical Accomplishments: Model Validation

Technical Accomplishments: Model Validation

4

Total Hydrogen Concentration (mol/m³) During Loading

Technical Accomplishments: Model Validation

18

Progress: Summary for Adsorbent Modeling

- Model Development and Validation
 - Numerical model Comsol[®]
 - Model validation against data for MaxSorb[®]
- Developed Baseline Scoping Model
 - Unit cell models Comsol[®]

Proposed Future Work: Adsorbent Models

- Conduct validation experiments that reduce parasitic heat transfer
 - Use N₂ at temperatures closer to ambient
- Compare performance of MOF-5[®] and MaxSorb[®]
- Use baseline models in 2 and 3 dimensions for design and sensitivity studies
 - Vessel design
 - Structured media
 - Novel concepts

Conduct process-specific experiments

- Validate models
- Test conceptual vessel designs
- Convert models to a form suitable for use in system analysis
- Apply models to prototype design

Approach: Acceptability Envelope

- The "Acceptability Envelope" or "Black Box Analysis" determines the range of parameters necessary for a coupled media and system to meet storage system performance targets
 - Based on energy balance
 - Serves as media screening tool
 - Guide for material development
 - Uses technical targets to establish values for parameter "grouping"
 - Defines ranges of parameters for media & storage vessel
- Current analysis applied to metal hydrides
 - Rectangular coordinates (RC)
 - Cylindrical coordinates (CC)

Technical Accomplishments: Acceptability Envelope

For both rectangular and cylindrical geometries

 $\rho_{\rm Hydride}$

 $\Delta m_{\rm H2}/\Delta t$

k

HSECOE

Hydride density (in reference form)

Required rate of charging/discharging from DOE Technical Targets

Bed thermal conductivity

Technical Accomplishments: Application of Acceptability Envelope

Progress: Summary for Acceptability Envelope

- Model Developed for Metal Hydrides
 - Based on energy balance
 - Constraints are from DOE Technical Targets
 - Model should be used in conjunction with media kinetics
 - Can be used to identify range of media & component parameters required to meet operational targets

Application

- Applied to NaAlH₄
- Some general applications have been made

Proposed Future Work: Acceptability Envelope

- Include effects of system parameters
 - Mass & volume of storage vessels, fins, tubes, other structures and fittings
- Complete the application to metal hydrides
 - Include coupled parameter ranges
 - Evaluate candidate metal hydrides
- Develop and apply model for adsorbents

Collaborations

Metal Hydride Modeling

- Mikhail Gorbounov, Daniel Mosher, Bart van Hassel (UTRC)
- Jacques Goyette, Maha Bhouri (UQTR)
- Sudarshan Kumar (GM)
- Kevin Drost, Goran Jovanivich, Anna Garrison (OSU)

Adsorbent Modeling

- Richard Chahine, M. A. Richard (UQTR)
- Andrea Sudik (Ford)
- Sudarshan Kumar (GM)
- Technology Area Interfaces
 - Scot Rassat, Kriston Brooks, Ewa Ronnebro, Dale King (PNNL)
 - Troy Semelsberger (LANL)
 - Norman Newhouse (Lincoln Composites)
 - Joseph Reiter (JPL)
 - Donald Siegel (U of M)

Project Summary

Relevance

The ultimate goals of the HSECoE are the design and testing of prototype hydrogen storage vessels, the interpretation of test data and the implication for full scale vessels. Within the HSECoE, the Transport Phenomena Technology Area is responsible for the development and application of analyses for storage systems that are necessary to identify and design prototype media and vessel configurations having the best performance relative to the DOE Technical Targets. Storage vessel models developed by this technology area will be essential to interpret data obtained from prototype testing and to relate it to full scale systems.

Approach

In Phase I the Transport Phenomena Technology Area will:

- Evaluate, interpret, and assimilate data for media and vessel components
- Develop and apply and "Acceptability Envelope" to metal hydrides
- Develop general models for scoping and detailed evaluation of storage system designs
 - Validate and test the models

Technical Accomplishments and Progress (as of 3/2010)

Have met/exceeded Phase I objectives:

- Evaluated and interpreted media and component data; assimilated into models
 - Developed and applied the "Acceptability Envelope" to metal hydrides
 - Applying to metal hydride vessel-media configurations
 - Devéloping model for adsorbents
- Developed baseline models for metal hydrides and adsorbents
 - Validated and tested the metal hydride models
 - Initiated validation of adsorbent model
 - Performed optimization studies of vessel configuration for NaAlH₄
 - Ready to compare storage system behavior for different media
 - Metal hydrides in general
 - Adsorbents MOF-5[®] and MaxSorb[®]

Collaborations

HSECOE

UQTR, UTRC, PNNL, LANL, JPL, Ford, GM, OSU, Lincoln Composites, U of M – (see previous slide)

Proposed Future Work (Phase I)

- Continue vessel optimization using models
 - Apply to novel design concepts
 - Micro & mini channel heat exchangers
 - Structured media
 - Develop and test models for adsorbents
- Extend "Acceptability Envelope" to adsorbents and apply
 - Include gravimetric and volumetric constraints
- Preliminary prototype designs

SUPPLEMENTAL SLIDES

Technical Accomplishments: Metal Hydride Models

- Model Development and Validation
 - 0-D kinetics model MathCAD[®]
 - Baseline numerical model Comsol®
 - Model validation against data
- Optimization Studies
 - Unit cell models Comsol[®]
 - Results
 - Materials Requirements
- Novel Concepts
 - Assessment

Technical Accomplishments: 0-D MathCAD® Kinetics Model

UTRC kinetics and saturation parameters

Assumptions:

- Isothermal
- Isobaric

HSECOE

Results

- Feed at 100 bar H₂ yields a significantly larger optimum temperature range
- Na₃AlH₆ saturation term reduces rate of formation of NaAlH₄

Kinetics Comparison

Technical Accomplishments: Fill Time - Metal Hydride (NaAlH₄)

HSECoE

Technical Accomplishments: NaAlH₄ Kinetics Vs Storage Vessel Charge Rate

Technical Accomplishments: Metal Hydride Model Validation (UTRC)

Comsol[®] model validated successfully by UTRC with ABAQUS[®] model and experimental data from previous DOE contract

Hydrogen loading history model vs. experiment

Time, s

Technical Accomplishments: Systematic Optimization Method Applied to Longitudinal Fins

36

Technical Accomplishments: Preliminary Scoping - Effect of Tube Arrangement on H₂ Charging

Na₃AlH₆ Concentration (mole/m³)

- For the 2D models (cases a d), increasing the number of heat exchanger tubes results in better utilization of the bed (higher H₂ loading rates).
- No improvement is seen between 49 and 81 cooling tubes (cases c and d, respectively)

HSECOE

• Suggests the existence of an optimum number of cooling tubes.

Technical Accomplishments: Metallic Honeycomb Structure

HSECoE

UQTA

38

Technical Accomplishments: Acceptability Envelope Development

• Storage materials (NaAlH₄) current characteristics

HSECOE

39

Technical Accomplishments: Acceptability Envelope Derivation
Physical Model in Rectangular
Coordinates

C_i (mol/m³) is concentration of H₂ stored by species i

C_f (mol/m³) is overall concentration of stored H₂

 M_{Hyd} eff is the mass of hydride needed to store the required mass of hydrogen

Solving the Energy Balance Equation for this Geometry Gives:

$$T(x) = -q''' \frac{x(x-L)}{2k} + T_s$$
So that
$$\Delta T = -\frac{L^2}{8k} \Delta H_{overall} \frac{\rho_{Hydride}}{M_{Hyd_eff} M_{H2}} \frac{\Delta m_{H2}}{\Delta t} \quad \text{where:} \quad \Delta T = T_{max} - T_s \qquad 40$$

Technical Accomplishments: Acceptability Envelope Derivation Physical Model in Cylindrical Coordinates

 C_{f} (mol/m³) is overall concentration of stored H₂

 $M_{Hyd_{eff}}$ is the mass of hydride needed to store the required mass of hydrogen

Solving the Energy Balance Equation for this Geometry Gives:

$$T(r) = T_s + \frac{q'''}{4k} \left[-r^2 + 2r_2r + \left(r_1^2 - 2r_1r_2\right) \right]$$

So that

$$\Delta T = -\frac{L^2}{4k} \Delta H_{\text{overall}} \frac{\rho_{\text{Hydride}}}{M_{\text{Hyd}_\text{eff}} M_{\text{H2}}} \frac{\Delta m_{\text{H2}}}{\Delta t}$$

where: $\Delta T = T_{max} - T_{s}$ $L^{2} = r_{1}^{2} - r_{2}^{2}$

41

Approach: Application & Interpretation of Acceptability Envelope

HSECoE

42

Approach: Acceptability Envelope Constraints Based on DOE Technical Targets

DOE Technical Targets

Target	System	<i>Hydride</i> weight /	Δt (min) for	$\Delta m_{H2}/\Delta t$	M _{Hyd_eff} [kg] for
	Gravimetric	System weight	$5 kg H_2$	(kg/s)	$5 kg H_2$
	Capacity				
DOE 2010 year	0.045	0.52	4.2	0.0198	58.1 ($\Delta t = 4.2 \min$)
DOE 2015 year	0.055	0.55	3.3	0.0253	$50.0 (\Delta t = 3.3 \text{ min})$
DOE Ultimate target	0.075	0.60	2.5	0.0333	$40.0 (\Delta t = 2.5 \text{ min})$

- Parametric analysis applied for fixed ΔT , $\Delta H_{overall}$, $\rho_{Hydride}$ and $M_{Hyd_{eff}}$ and varying:
 - Thermal conductivity, k
 - Spacing of heat transfer elements, *L*

Approach: Value of Parameter Grouping in Acceptability Envelope

HSECoE

44

Technical Accomplishments: Overall Summary

Have met the following Phase I objectives:

- Developed acceptability envelope for metal hydrides
 - Need to specify gravimetric & volumetric constraints
- Performed comparison between metal hydride models & available data
- Developed baseline models for metal hydrides
 - Initiated model development for adsorbent media
- Performing optimization studies and modeling of vessel configurations

Detailed models

- Ready to compare storage system behavior for different media
 - Metal hydrides
 - Adsorbents MOF-5[®] and MaxSorb[®]

Acceptability envelope

- Metal hydrides
 - Applying to vessel-media configurations
- Adsorbents
 - Model is being developed

• Path forward:

- Continue sensitivity analyses
- Pursue novel concepts
 - Micro & mini-channel heat exchangers
 - Structured media
- Conduct preliminary system design

