HYDROGEN STORAGE IN METAL-ORGANIC FRAMEWORKS

David Britt

Department of Chemistry Center for Reticular Chemistry UCLA

June 9, 2010

Project ID ST049

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Project start date: 5/1/2005 Project end date: 4/30/2010 Percent complete: 90%

Barriers

Barriers addressed

- Improved gravimetric and volumetric density of hydrogen uptake
- □ Improved hydrogen binding energy
- Synthesic scale up of MOFs to cubic meters

Budget

Total project funding

- DOE share: \$1.71 M
- Funding received in FY09: \$428 K

Collaborating Partners

- □ Randy Snurr (NW)
- Jeff Long (UC Berkley)
- Bill Goddard (Caltech)

BASF

Important Aspects of MOF Chemistry

- Design of composition (metal centers and organic links). Synthesis and structural characterization is well worked out.
- Control of structure, topology, interpenetration and porosity.
- Formulation of hypothesis and testing of hypothesis is quite feasible. This leads to definitive conclusions and allows for rapid identification of important parameters which impact hydrogen uptake.

MOF: Hydrogen Storage Capacities (50 bar, 77 K)

Independent Verification of MOF-177 Hydrogen Uptake Capacity

(volumetric and gravimetric measurements verified, shown using gravimetric scale)

Feasibility of MOFs for hydrogen storage

Inexpensive organic links

Scale-Up and Shaping at BASF

Excellent durability
Fast H₂ charge rate (< 3 min)
4 wt% of H₂ delivery
(2-60 bar at 77 K)

Objectives (FY09-10)

To increase hydrogen storage at room temperature

- 1. Implementation of "soft chemisorption": design and preparation of new MOF with metal binding sites
 - Impregnation of metals
 - Low-pressure measurements at various temperatures
- **2.** Preparation of high-surface area MOFs
 - Preparation of expanded organic link
 - High-throughput MOF synthesis
 - Activation of high-surface area MOFs

Possible routes for metal impregnation

Control coordination number without losing exposed metal surface

MOFs with bipyridine link

- Does not form small molecules (e.g. M(BPy)₃)
- Higher stability compared to Zn-MOFs
- Simple synthetic procedure
- Prevention of metal exchange during the metal impregnation process

N₂ and H₂ isotherms for metalated MOF-253

- Successive metalation was confirmed by K-edge extended X-ray absorption fine structure spectroscopy (EXAFS).
- □ Significant surface area decrement was observed in higher loading samples.
- It is not clear if the hysteresis is attributed to the strong interaction between metal and H₂.

Preparation of IRMOF-76 and 77

N₂ and H₂ isotherms for IRMOF-77

H₂ uptake / mg g-1

Preparation of MOF-353

Better H_2 uptake behavior in the low pressure region compared to IRMOF-77. When pyridine was removed, the surface area dropped.

Metalated porphyrin MOFs

	BET area / m ² g ⁻¹	H₂ uptake / mg g⁻¹	Q _{st} ∕ kJ mol⁻¹
MOF-130-Cr	370	11.3	6.3
MOF-130-Fe	490	9.8	7.4
MOF-130-Co	390	10.8	6.8
MOF-130-Cu	400	10.6	6.5
MOF-130-Zn	540	10.8	6.5

Isoreticular expansion

Poor volumetric uptake (g/L)

15

Synthesis of MOF-200

MOF-200 structure was maintained after removal of guest molecules.

Low-pressure N₂ isotherms

BET surface area: 4530 m² g⁻¹

Total pore volume: 3.59 cm³ g⁻¹ (the **largest** value among crystalline materials)

Simulated N₂ isotherm for MOF-200

Experimental data are well-reproduced by simulation calculations.

High-pressure H₂ isotherms at 77 K

Porosity and H₂ uptake of MOFs at 77 K and 80 bar

	Density g/cm ³	Void space %	BET SA m ² /g	Excess mg/g	Total mg/g	Total g/L
Bulk H ₂	n/a	n/a	n/a	n/a	n/a	26
MOF-200	0.22	90.1	4530	74	163	36
MOF-177	0.43	82.6	4500	73	116	50
MOF-5	0.59	79.8	3800	76	106	63
NOTT-112	0.50	79.8	3800	76	107	54
UMCM-2	0.40	84.2	5200	69	124	50

Stored hydrogen per mass and per volume

(only metal hydrides showing good recycling are included)

Summary

Relevance: For room temperature hydrogen storage, a systematic survey was pursued experimentally.

Approach: Aim at increasing strong binding sites for maximum hydrogen uptake capacity without losing pore volume.

Technical accomplishments and progress:

- Preparation of novel MOFs with metals
- Synthesis and activation of ultra-high surface area MOFs

Technology transfer/collaborations: Active relationship with collaboration partners and BASF.

Proposed future research:

- Employ light weight metals to create strong binding sites.
- Material design based on theoretical prediction.

Current Group Members

