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Project start date: 5/1/2005
Project end date: 4/30/2010
Percent complete: 90% 

Barriers addressed
 Improved gravimetric and volumetric 

density of hydrogen uptake
 Improved hydrogen binding energy
 Synthesic scale up of MOFs to cubic 

meters

 Total project funding

 DOE share: $1.71 M

 Funding received in FY09: $428 K

Timeline

Budget

Barriers

 Randy Snurr (NW)
 Jeff Long (UC Berkley)
 Bill Goddard (Caltech)
 BASF

Collaborating Partners
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Overview



Important Aspects of MOF Chemistry 

 Design of composition (metal centers and organic links). 
Synthesis and structural characterization is well worked out.

 Control of structure, topology, interpenetration and 
porosity.

 Formulation of hypothesis and testing of hypothesis is quite 
feasible. This leads to definitive conclusions and allows for 
rapid identification of important parameters which impact 
hydrogen uptake.
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MOF: Hydrogen Storage Capacities (50 bar, 77 K)
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gH2 L-1



12 wt% total adsorbed

7.5wt% surface excess

Independent Verification of MOF-177 Hydrogen Uptake Capacity
(volumetric and gravimetric measurements verified, shown using gravimetric scale) 

77 K
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Feasibility of MOFs for hydrogen storage

6

Excellent durability 
 Fast H2 charge rate (< 3 min)
4 wt% of H2 delivery 
(2-60 bar at 77 K)

Inexpensive organic links

Scale-Up and Shaping at BASF

250 kg 
batches



1. Implementation of ”soft chemisorption”: design and 
preparation of new MOF with metal binding sites
 Impregnation of metals
 Low-pressure measurements at various temperatures

2. Preparation of high-surface area MOFs
 Preparation of expanded organic link
 High-throughput MOF synthesis
 Activation of high-surface area MOFs 

Objectives (FY09-10)
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To increase hydrogen storage at room temperature



Possible routes for metal impregnation
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Control coordination number without 
losing exposed metal surface



MOFs with bipyridine link

MOF-253 
(Al-BPyDC)

Metal

• Does not form small molecules (e.g. M(BPy)3)
• Higher stability compared to Zn-MOFs
• Simple synthetic procedure
• Prevention of metal exchange during the metal 

impregnation process
9
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N2 and H2 isotherms for metalated MOF-253

 Successive metalation was confirmed by K-edge extended X-ray absorption fine 
structure spectroscopy (EXAFS).

 Significant surface area decrement was observed in higher loading samples.
 It is not clear if the hysteresis is attributed to the strong interaction between metal 

and H2. 

BET SA
640 m2 g-1

90 m2 g-1

90 m2 g-1



Preparation of IRMOF-76 and 77
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IRMOF-76IRMOF-77 (interwoven)
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N2 and H2 isotherms for IRMOF-77

IRMOF-77 having a long linker was activated.
Initial Qst was estimated to be 5.2 kJ mol-1

Surface area
BET 1590 m2 g-1

Langmuir 1610 m2 g-1
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Preparation of MOF-353

+   Al(NO3)3

BET SA: 470 m2 g-1

Langmuir SA: 590 m2 g-1

MOF-353
Al(OH)(L1)

Better H2 uptake behavior in the low pressure region compared to IRMOF-77.
When pyridine was removed, the surface area dropped.



Metalated porphyrin MOFs
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Cr
Zn
Co
Cu
Fe

Fe
Cr
Zn
Cu
Co

BET area / m2 g-1 H2 uptake / mg g-1 Qst / kJ mol-1

MOF-130-Cr 370 11.3 6.3

MOF-130-Fe 490 9.8 7.4

MOF-130-Co 390 10.8 6.8

MOF-130-Cu 400 10.6 6.5

MOF-130-Zn 540 10.8 6.5



Isoreticular expansion

MOF-177 MOF-180 MOF-200
MOF-700

High surface area and low density
 Large gravimetric uptake (wt%)
 Poor volumetric uptake (g/L)

How many benzene rings 
can be inserted? 15

BTB BTE BBC TBC



Synthesis of MOF-200

+     Zn2+
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Activated

As-synthesized

Simulated

BBC MOF-200 (Zn4O(BBC)2)

MOF-200 structure was maintained after removal of guest molecules.



Low-pressure N2 isotherms

MOF-200

MOF-177

MOF-5
1999

2004

2009

Year

BET surface area: 4530 m2 g-1

Total pore volume: 3.59 cm3 g-1 (the largest value among crystalline materials) 17



Simulated N2 isotherm for MOF-200

O. Yazaydin & R. Snurr
Northwestern University

Simulated BET SA
= 6800 m2 g-1

Experimental data are well-reproduced by simulation calculations.  18



High-pressure H2 isotherms at 77 K

MOF-200, 77 K

Surface excess Total uptake

Density g/cm3 Void space % BET SA m2/g Excess mg/g Total mg/g Total g/L
Bulk H2 n/a n/a n/a n/a n/a 26

MOF-200 0.22 90.1 4530 74 163 36
MOF-177 0.43 82.6 4500 73 116 50

MOF-5 0.59 79.8 3800 76 106 63
NOTT-112 0.50 79.8 3800 76 107 54
UMCM-2 0.40 84.2 5200 69 124 50

Porosity and H2 uptake of MOFs at 77 K and 80 bar



MOF-200

20Gravimetric H2 density in MOF-200 is approaching those of hydrocarbons.

Stored hydrogen per mass and per volume
(only metal hydrides showing good recycling are included)



Summary

Relevance: For room temperature hydrogen storage, a systematic 
survey was pursued experimentally. 

Approach: Aim at increasing strong binding sites for maximum 
hydrogen uptake capacity without losing pore volume. 

Technical accomplishments and progress:
 Preparation of novel MOFs with metals
 Synthesis and activation of ultra-high surface area MOFs

Technology transfer/collaborations: Active relationship with 
collaboration partners and BASF. 

Proposed future research:
 Employ light weight metals to create strong binding sites. 
Material design based on theoretical prediction. 
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Current Group Members
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