

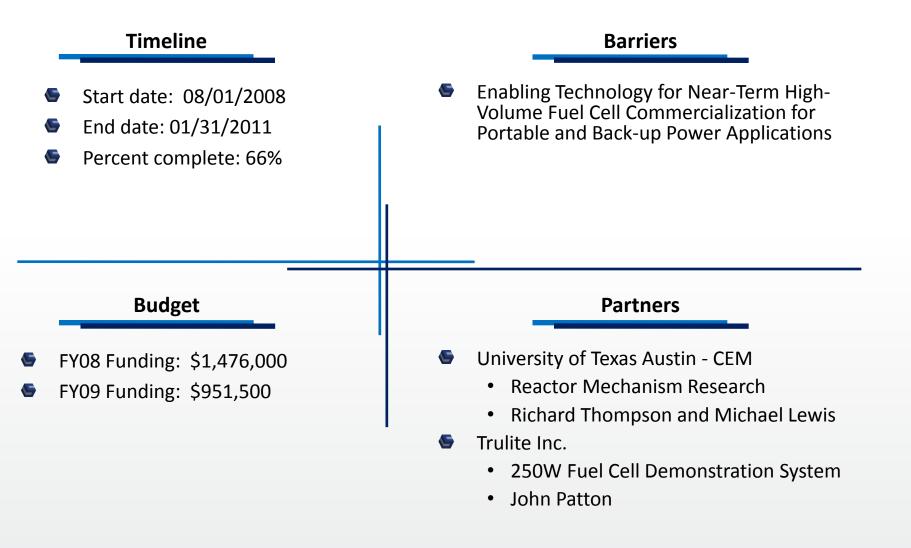
improving our world... one discovery at a time

NaSi and Na-SG Powder Hydrogen Fuel Cells

Andrew Wallace and Michael Lefenfeld

SiGNa Chemistry

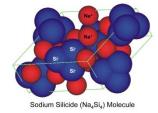
June 7-11, 2010


www.signachem.com apwallace@signachem.com

ST055

This presentation does not contain any proprietary, confidential, or otherwise restricted information

WWW.SIGNACHEM.COM


SigNa CHEMISTRY Program Overview

Signa Technology Overview

• Sodium Silicide rapidly liberates hydrogen from water (or water solutions) leaving a benign common industrial chemical (sodium silicate)

 $2NaSi(s) + 5H_2O(\ell) \rightarrow 5H_2(g) + Na_2Si_2O_5(aq)$ (No Catalyst, Room Temperature)

- Significant System Benefits for Portable Power Applications (1 W to 3 kW)
 - Safety: Does not ignite or oxidize in air at standard conditions even when fully exposed to air (i.e. opened storage canister).
 - **Thermal Stability:** Material is stable over all practical temperature ranges (-55 to 300°C)
 - Storage: The material has been demonstrated to have a shelf-life of over two years but is capable for being stored for significantly longer
 - Pressure: The maximum developed pressure is determined by the system design not the material characteristics. The maximum pressure is expected to be a nominal 30 psi (material capable of 1000's)
 - **Ease of Use:** No catalyst required to produce hydrogen gas
 - **By-products:** Generates a non-toxic aqueous waste, sodium silicate.
 - Low-Weight: NaSi yields 1715 W-Hr/kg (assume fuel cell conversion of 17.5 W-Hr / gm-H2)

Relevance

SigNa CHEMISTRY Program Objectives

- Relevance
- Demonstrate enabling hydrogen storage technology suitable for <u>early fuel</u> <u>cell market applications with high volume potential</u>
- Demonstrate the benefits of sodium silicide technology in a push-to-start hydrogen generator system
- Develop a demonstration system capable of ~250 W for applications such as battery re-chargers, remote telecommunications, emergency responders, backup power, and personal mobility (i.e. scooter, bicycle, etc.)
- Improve hydrogen yield and maximize water utilization for sodium silicide based hydrogen release

NaSi Fueled Bicycle

300 W Electric Generator Replacement

SigNa NaSi Based H₂ Fuel Cells

$2NaSi_{(s)} + 5H_2O_{(l)} \rightarrow 5H_{2(g)} + Na_2Si_2O_{5(aq)}$

Cheap Raw Materials with 100% Utilization	Patented Material and Production Processes	Rapid, Controllable, Safe Hydrogen Release	Lightweight, Low Cost Power for Portable Electronics	Cradle-to-Cradle Life Cycle Process and/or Low Cost Disposal
Sodium	<section-header></section-header>	Hydrogen	Consumer Electronics Small, Low-Pollution Engines Backup Power Personal Mobility	Food preservation Timber treatment Passive fire protection Refractory use Water treatment Detergent Auxiliaries

SigNa Technical Approach

Approach

Only Phase II Tasks (7-11) Are Shown

Task 7.0 Operational/ Env Testing	Task 8.0 2 nd Gen Concept Testing & Dev	Task 9.0 2 nd Gen Hardware Design & Dev	Task 10.0 2 nd Gen Hardware Testing & Verification	Task 11.0 Materials Production & Adv. Research
 <u>Basic operation verified.</u> <u>Additional tests planned.</u> Multiple max capacity runs Re-start / load variability testing Low temperature start- up with water additives (hydrogen purity verified under room temp conditions) 	Multiple performance and reliability improvement activities• Mechanical methods for better reaction temperature control• Continued development on water distribution mechanisms• Continued research on passive (i.e. pump-less) water feeding	 <u>2nd Generation</u> <u>Hardware Improvements</u> Improved canister connect / disconnect mechanism Multiple operational and reliability improvements Higher energy density cartridges 	2 nd Generation Hardware <u>Testing & Continued Fuel</u> <u>Cell System Operability</u> •100's of hours demonstrated. 1000's to be demonstrated.	Continued energy density improvements and production process development • Continued evaluation of high performance materials and mixtures • Continued evaluation of water control additives • Continued development of materials production processes
				Si ^T Si ^T Si ^T

SigNa Previously Funded Results

Signa

Relief Pressure **Schematic Laboratory Unit** Transducer Valve H₂ Output Pump Water ← ^{Hydrogen} Separator H2 Sealing Check Valve Powder **Controlled H₂ Release** "Current Work" Includes Advancement Pressure (PSI) H2 Flow (slpm) of Laboratory Hardware to Prototypes 0.5 100 90 80 0.4 70 (IS 60 0.3 (udis) Llow (sipm)) 50 Lessare 40

30

20 10

0

8

10

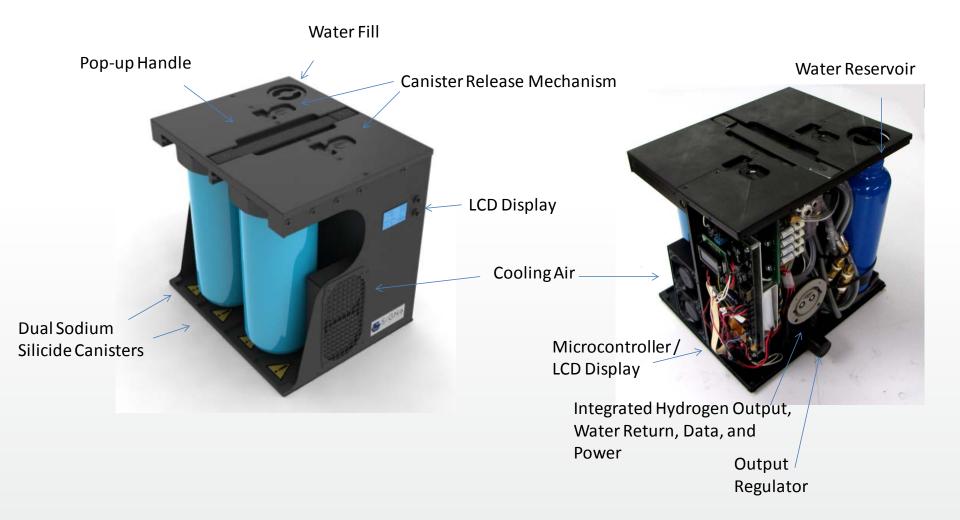
12

14

Time (min)

16

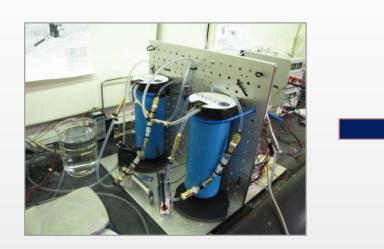
18

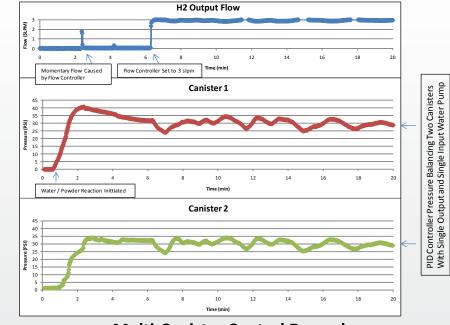

0.1

7

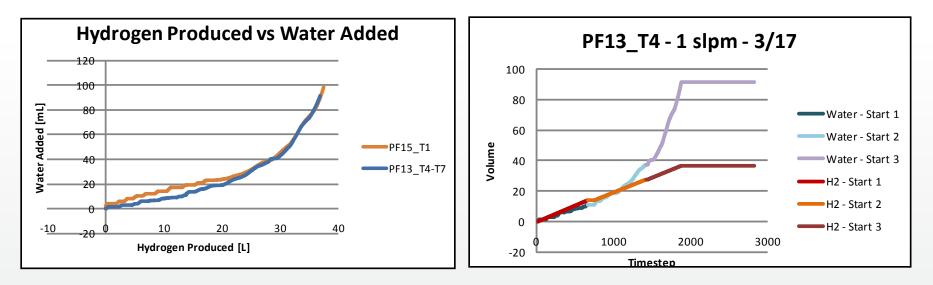
0

20


SigNa Hydrogen Generator Prototype Progress


SigNa CHEMISTRY Dual Canister Control Progress

- Developed methods to maintain near constant pressure without measuring fuel cell current (i.e. Hydrogen Flow)
- Predictive PID controller variables include:
 - % Used Water Pump History
 - Temperature
 Pressure Changes


Laboratory Setup for Controller Development

Multi-Canister Control Example

SigNa Start/Stop Operation

- Water Flow vs. Hydrogen Delivery" is Nearly Constant for Steady-State or Start-Stop Operation
- Higher water flows at the end of the reaction are driven by internal temperature reductions. The reaction rate of sodium silicide is near constant until > 95% of reaction completion

PF15_T1: Constant Operation at 0.5 slpm H₂

PF13_T4-T7: Constant Operation at 1 slpm H_2 . Cartridge utilized over 3 runs in equal duration. 24 hour off-time between runs.

SigNa NaSi Hydrogen Cartridge

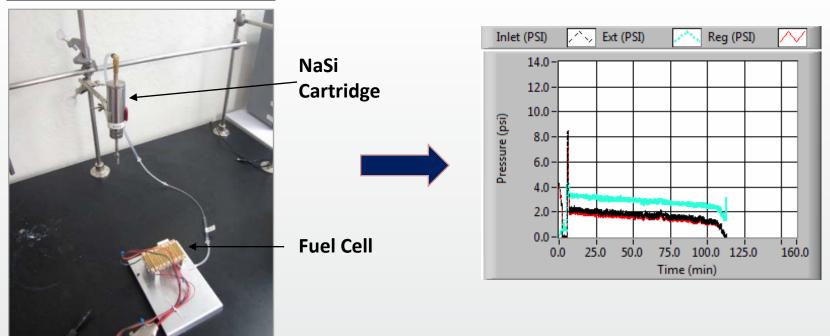
Progress

Hot Swappable Integrated Capacity Meter Start-Stop Capable "Paint Can" Packaging

Specifications	Value
Energy/Weight, Powder (W-Hr/kg)	1715
Powder Cost (\$/W-Hr)	\$0.01
Energy/Weight, Powder + Package (W-Hr/kg)	1300
Package + Powder Cost (\$/W-Hr)	\$0.02
Energy/Weight, Powder + Package + Water (W-Hr/kg)	> 650
Energy per Cartridge (W-Hr)	800
Flow Rate (slpm)	< 2
Powder Weight (kgs)	< 0.5
Nominal Pressure (psi)	30
Non-Hazardous Shipment	Yes*
Air Passenger Carry-on	Possible**
* Non bezerdeue eir ebiement un te 500 greme /eertridge	

* Non-hazardous air-shipment up to 500 grams /cartridge

** Air Passenger carry-on limited to 200 grams /cartridge

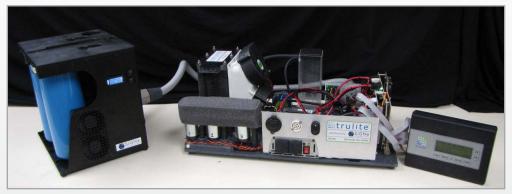

SigNa Next Generation Cartridges

NaSi Volume-Exchanging Lab Unit

- Solution All balance of plant included \rightarrow powder + water
- Orientation independent
- Passive volume exchanging
- Start-stop capable
- Regulator-free fuel cell operation

Volume-Exchanging Test Setup

SigNa 300W Fuel Cell System


Core System Features Developed Under Sub-contract to Trulite

- 300 W Continuous DC Output, 250 W AC
- Lithium-ion Battery Hybrid
- Fuel cell generated water capture and return
- Single hydrogen release fuel cell connection: includes hydrogen, water return, balance-of-plant power, and data communications
- Stackable systems with lay-flat handles
- Two systems developed: one laboratory and one packaged

Sodium Silicide Based 300 W Hybrid Fuel Cell Based Test Stand

13

SigNa Increasing Energy Density Plan Progress

Improve Hydrogen Yield: Standard NaSi generates 9.8% hydrogen. Ultra high density silicide mixtures have yielded over 13%. Research in this area is on-going.

Reduce Over-Stoich Water (Chemical): Chemical methods to tailor waste product water absorption are under development. Preliminary results (not included in shown results) indicate an over 30% reduction in water.

Reduce Over-Stoich Water (Thermal): Less over-stoich water is required at higher reaction temperatures. Table below does not include other possible benefits of advanced material formulation or other chemical alterations of sodium silicide.

	Internal/Local Reaction		Net Usable Specific Energy Using Typical
Over-Stoich Water (%)			PEM Fuel Cell, W-Hrs/kg
210	85	992	491
90	150	1445	753
34	215	1877	959

Impact of Local Reaction Temperature on Over-Stoich Water for NaSi

Signa Collaborations

Subcontract to Trulite Inc.

- **Program:** Development of a 250W fuel cell system with water recirculation
- Status: Subcontract awarded. 250W system delivered with testing on-going
- Principal Investigator: John Patton

Subcontract to the University of Texas Austin, CEM

- Program: Alternative reaction mechanism development and control
- **Status:** Subcontract awarded. Incorporating results into 2nd generation design
- **Principal Investigators:** Richard Thompson and Michael Lewis

Signa Proposed Future Work

- Deliver systems for hydrogen generator beta testing
- Improve hydrogen release system performance and robustness
- Work with development partners for end-system integration
- Develop scalable, high-volume manufacturing process for sodium silicide
- Continued research on ultra-high density silicide materials
- Minimize waste product water absorption

SigNa CHEMISTRY Program Summary

- Sodium silicide enables real-time hydrogen release for portable applications that require low weight and cost
 - Low Weight: > 750 W-Hrs/kg demonstrated including water & powder
 - **Controllable**: low-pressure, load-following H₂ release demonstrated for flows under 4 slpm H₂
 - High Purity: H₂ purity verified to 99.99% (Limited by Equipment)
- Operated two ~300 W Fuel Cell Systems for 100's of Hours
 - Fuel Cell Generator and Electric Bicycle
- Continued research on ultra-high density silicides will enable packaged fuel to approach
 2 kW-Hr/kg and \$4/kW-Hr for mobile power solutions

NaSi Fueled Bicycle

300 W Generator Replacement