Chemical Hydrogen Storage Using Aluminum Ammonia-Borane Complexes

M. Frederick Hawthorne, Satish S. Jalisatgi, Han Baek Lee, Jianguo Wu University of Missouri 6/9/2010

ST059

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date 01/01/2005
- Project end date 06/30/2010
- Percent complete 100%

Budget

- Total project funding
 - DOE share \$1,387,420
 - Contractor share \$346,855
- Funding received in FY09 \$340,493
- Funding for FY10 N/A

Barriers

- Barriers addressed
 - System weight and volume
 - Efficiency

Partners

- DOE center of excellence for chemical hydrogen storage
- LANL
- PNNL

Project Objectives

- Evaluate aluminum amidoborane derivatives as hydrogen storage candidates that can achieve DOE storage targets.
- Develop efficient thermal dehydrogenation methods for hydrogen release from aluminum amidoborane derivatives.

 $n Al(NH_2BH_3)_3$ (s) $\longrightarrow [Al(NBH)_3]_n$ (s) + 6n H₂ (g) (10.3 wt.% Hydrogen)

n LiAl(NH₂BH₃)₄ (s) \longrightarrow [LiAl(NBH)₄]_n (s) + 8n H₂ (g) (10.4 wt.% Hydrogen)

• In collaboration with Center Partners, determine a suitable route for the regeneration of the spent material.

Approach-Relevance Aluminum Amidoboranes

- Ammonia borane (AB) is a demonstrated source of chemical hydrogen storage and has the material capacity of 20 wt. % hydrogen. It can potentially meet DOE performance parameters except for its regeneration from spent materials.
- Aluminum amidoborane complexes (AI-AB) and their derivatives have high hydrogen capacity and are capable of meeting DOE storage targets.
- The presence of an AI center bonded to multiple AB might combine the efficiency of AB dehydrogenation with an AI mediated hydrogenation process leading to better rates and reversibility.
- It is presumed that AI-AB complexes will decrease the enthalpy of hydrogen loss and undergo dehydrogenation at a lower temperature than AB alone.

Approach – Relevance Amidoboranes System Capacities:

- **a.** NH_3BH_3 (s) \longrightarrow BNHn (s) + 2.5 H₂ (g) (19 wt% hydrogen)
- **b.** $n \operatorname{LiNH}_2\operatorname{BH}_3$ (s) \longrightarrow [LiNB]_n (s) + 2.5 $n \operatorname{H}_2$ (g) (13.5 wt.% Hydrogen)
 - $n \operatorname{LiNH}_2\operatorname{BH}_3$ (s) \longrightarrow [LiNBH]_n (s) + 2 $n \operatorname{H}_2$ (g) (10.9 wt.% Hydrogen)
- C. $n \operatorname{NaNH}_2\operatorname{BH}_3$ (s) \longrightarrow [NaNB]_n (s) + 2.5 $n \operatorname{H}_2$ (g) (9.4 wt.% Hydrogen) $n \operatorname{NaNH}_2\operatorname{BH}_3$ (s) \longrightarrow [NaNBH]_n (s) + 2 $n \operatorname{H}_2$ (g) (7.5 wt.% Hydrogen)
- **d**. $n \operatorname{Ca}(\operatorname{NH}_2\operatorname{BH}_3)_2$ (s) \longrightarrow $[\operatorname{Ca}(\operatorname{NB})_2]_n$ (s) $+ 5n \operatorname{H}_2$ (g) (10 wt.% Hydrogen) $n \operatorname{Ca}(\operatorname{NH}_2\operatorname{BH}_3)_2$ (s) \longrightarrow $[\operatorname{Ca}(\operatorname{NBH})_2]_n$ (s) $+ 4n \operatorname{H}_2$ (g) (8 wt.% Hydrogen)
- **e.** $n \operatorname{NH}_3\operatorname{Al}(\operatorname{NH}_2\operatorname{BH}_3)_3$ (s) \longrightarrow [Al(NB)₃]_n (s) + 9n H₂ (g) (13.4 wt.% Hydrogen)
- **f** $n \operatorname{Al}(\operatorname{NH}_2\operatorname{BH}_3)_3$ (s) \longrightarrow $[\operatorname{Al}(\operatorname{NB})_3]_n$ (s) $+ 7.5n \operatorname{H}_2$ (g) (12.8 wt.% Hydrogen)

 $n \operatorname{Al}(\operatorname{NH}_2\operatorname{BH}_3)_3$ (s) \longrightarrow $[\operatorname{Al}(\operatorname{NBH})_3]_n$ (s) + 6 $n \operatorname{H}_2$ (g) (10.3 wt.% Hydrogen)

- **G.** $n \text{NH}_4[\text{AI}(\text{NH}_2\text{BH}_3)_4]$ (s) \longrightarrow $[(\text{AI}(\text{NB})_4\text{NH}]_n$ (s) + 11.5 $n \text{H}_2$ (g) (14 wt.% Hydrogen)
- **h**. $n \operatorname{LiAl}(\operatorname{NH}_2\operatorname{BH}_3)_4$ (s) \longrightarrow [LiAl(NB)₄]_n (s) + 10 $n \operatorname{H}_2$ (g) (13 wt.% Hydrogen)

Approach Synthesis of AI-AB Complexes

- For this study we focused our efforts on the synthesis of Al(NH₂BH₃)₃ and LiAl(NH₂BH₃)₄ [referred to as Al(AB)₃ and (LiAl(AB)₄ respectively].
- Metathesis reaction of $AICI_3$ with M-AB (M = Li, Na or K) should give $AI(AB)_3$. Further reaction of $AI(AB)_3$ with liquid NH₃ will give the ammonia adduct, NH₃•AI(AB)₃.
- Similarly the reaction of LiAlH₄ with AB Should give LiAl(AB)₄.

Technical Accomplishments and Progress-Synthesis of AI-AB Complexes

 $AI(AB)_3$ is conveniently accessible by the reaction of $AICI_3$ with M-AB (M=Li, Na or K) at low temperature. The choice of solvent and temperature are critical for isolation of pure material. (Milestone)

AI(NH₂BH₃)₃ from AICI₃

 $3 M(NH_2BH_3) + AICI_3 \longrightarrow AI(NH_2BH_3)_3 + 3 MCI$ M = Li, Na or K

 $AI(NH_2BH_3)_3 + NH_3$ (excess) \longrightarrow $NH_3 \cdot AI(NH_2BH_3)_3$

 $LiAI(AB)_4$ was synthesized in quantitative yield by reacting $LiAIH_4$ with AB at room temperature.

Li[Al(NH₂BH₃)₄] from LiAlH₄

 $LiAIH_4 + 4 NH_3BH_3 \longrightarrow LiAI(NH_2BH_3)_4 + 4 H_2$

Technical Accomplishments and Progress-Characterization of AI-AB Complexes

Both Al(AB)₃ and LiAl(AB)₄ are colorless solids. LiAl(AB)₄ is thermally more stable than Al(AB)₃. Amine adducts of Al(AB)₃ are colorless polymeric compounds insoluble in common organic solvents. (Milestone)

Technical Accomplishments and Progress-Thermal Dehydrogenation Studies TGA-MS

- $AI(AB)_3$ starts releasing hydrogen at 60 °C.
- $NH_3 \bullet Al(AB)_3$ releases ammonia when heated. •
- LiAl(AB)₄ releases hydrogen at higher • temperatures.
- Preliminary DSC analysis indicates the Al(AB)₃ has • exothermic hydrogen release therefore will require off board regeneration. (milestone) 9

Partner - I ANI

Technical Accomplishments and Progress-Dehydrogenation of AI(AB)₃

Technical Accomplishments and Progress-Dehydrogenation of LiAl(AB)₄

 $LiAl(AB)_4$ releases more hydrogen in the presence of a ionic liquid - 1-butyl-3-methylimidazolium tetrafluoroborate

Technical Accomplishments and Progress-NMR Studies on Al(AB)₃ Dehydrogenation

Solution ¹¹B NMR (160 MHz) of thermolysis products of $AI(AB)_3$ at 80 °C in glyme.

Solid state CPMAS ¹¹B NMR (96 MHz) of thermolysis products of $AI(AB)_3$ after 4h at 120 °C.

Technical Accomplishments and Progress-NMR Studies on LiAI(AB)₄ Dehydrogenation

Solution ¹¹B NMR (160 MHz) of thermolysis products of LiAl(AB)₄ at 80 $^{\circ}$ C in glyme.

Solid state CPMAS ¹¹B NMR (96 MHz) of thermolysis products of LiAl(AB)₄ after 4h at 120 °C. 13

Collaborations

- This project is coordinated with Center Partners through frequent discussions, monthly conference calls, sample sharing and analytical instrument support.
 - LANL TGA MS, DSC, Support for dehydrogenation studies
 - PNNL Support for dehydrogenation studies

Proposed Future Work

2010 -

- Determine the solid state structure of Al(AB)₃, LiAl(AB)₄, and amine adducts of Al(AB)₃.
- Identify dehydrogenation products and intermediates.

Summary of Accomplishments

2009-2010-

- Synthesized $AI(AB)_3$ and $LiAI(AB)_4$ in good yields.
- The rate of hydrogen release is higher in the presence of an ionic liquid.
- Preliminary NMR studies indicate that the dehydrogenation of LiAI(AB)₄ and AI(AB)₃ follows AB and metal amidoborane dehydrogenation pattern due to release of AB from AI-AB complexes.

Project Summary

- Relevance: Aluminum amidoboranes (AI-AB) have high material wt capacity (13 wt%) and are capable of meeting DOE storage targets.
- Approach: AI-AB systems with their multiple AB bonded to an AI center might combine efficiency of AB dehydrogenation with an AI mediated hydrogenation process leading to better rates and reversibility.
- Technical Accomplishments and Progress: (Synthesis) Al(AB)₃ was synthesized in two steps starting from AB in good yields. LiAl(AB)₄ was synthesized in one step from AB in excellent yield. (Release) Dehydrogenation of both Al(AB)₃ and LiAl(AB)₄ in presence of an ionic liquid releases hydrogen at a higher rate and amount.
- Future Work: Identify dehydrogenation intermediates using solid state NMR studies. Determine the solid state structures of AI-AB complexes and their amine adducts.