

Main Group Element and Organic Chemistry for Hydrogen Storage and Activation

Anthony J. Arduengo & <u>David A. Dixon</u> The University of Alabama DOE Center of Excellence for Chemical Hydrogen Storage June 9, 2010 Project ID ST060

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: Jan. 05
- Project end date: March 31, 2010
- Percent complete: 100%

Barriers

DOE Barriers addressed

- System Cost
- System Weight and Volume
- Spent Fuel Regeneration

Budget

- Projected total project funding: \$2,255,397
- DOE share: \$1,649,495
- UA share: \$605,901
- Funding for FY09: \$389,495 (full funding DOE)
- Funding for FY10: 0(DOE)

Partners

• DOE Center of Excellence for Chemical Hydrogen Storage

• LANL, PNNL, UW, UC-Davis, Penn State, Penn, U. Missouri-Columbia, U. Oregon, Dow, and Rio Tinto.

Objectives/Relevance

 Develop promising approaches to chemical H₂ storage for current and future DOE targets using computational chemistry and synthetic organic/inorganic chemistry.

- Enable DOE to meet the technical objective: "*By 2010, develop and verify on-board hydrogen storage systems achieving 2 kWh/kg (6 wt%), 1.5 kWh/L, and \$4/kWh.; by 2015, 3 kWh/kg (9 wt%), 2.7 kWh/L, and \$2/kWh" by using chemical hydrogen storage systems.*

- Provide computational chemistry support (thermodynamics, kinetics, properties prediction, spectroscopic data analysis) to the experimental efforts of the DOE Center of Excellence for Chemical Hydrogen Storage to reduce the time to design and develop new materials that meet the DOE targets.
 - Focus on design of new materials and regeneration schemes.
 - Major source for thermodynamic data for entire Center
 - Develop new approaches for thermodynamic predictions
- Experimental focus on organic and main group chemistries with better release and regeneration properties due to improved energy balance. Longer term alternatives.

Approach

 Use highly accurate and validated first principles computational chemistry approaches on advanced computer architectures to predict the electronic structure of molecules to obtain thermodynamic and kinetic information in support of the design of hydrogen storage materials and of regeneration systems: predict the release and addition of H₂ to chemical systems.

- Use combination of validated molecular orbital theory and density functional theory

- Key issue: Accuracy/reliability of models for real systems
- Develop new concepts to improve energy balance relevant for ease of H₂ release and regeneration of H₂ storage system.
- Develop new approaches to the prediction of thermodynamic and kinetic properties
- Develop new approaches to release hydrogen from organic and main group compounds based on new chemistries.
 - Demonstrate proof of concepts and key reactions.
- Key experimental issues:
 - Minimize weight by eliminating substituents or changing them into components that can store H_2 while maintaining kinetic and thermodynamic properties.
 - Demonstrating H₂ release reactions under expected operating conditions.
- Team

Experiment: Arduengo, Masaaki Yoshifuji (visiting faculty), Luigi Iconaru (grad student), Jason Runyon (grad student), Andreea Cojocaru (grad student)

Computation: Dixon, Daniel Grant (grad student), Ted Grant (grad student), Monica Vasilu (grad student), D.J. Outlaw (CBHP undergrad), Pierce Robinson (undergrad), Myrna H. Matus (visiting faculty, University of Veracruz-Xalapa), Minh T. Nguyen (visiting faculty, Leuven)

Key Accomplishments

- Developed approach to predict heats of vaporization (liquid heats of formation) with new atomic parameters derived from experiment (CoE, LANL, R&H). Tested against known values. Used for process simulations.
- Predicted reliable thermodynamics for large numbers of compounds for release and regeneration schemes to aid in chemical design and process design and simulation.
 Data provides guidance for experimental design and used in process simulations.

- First reliable predictions of the properties of spent fuel BNH_x , x = 1 - 2.

- Significant advances in reliable predictions of the thermodynamics of new H₂ chemical hydrogen storage systems to help groups focus experimental efforts. Example: Properties of new compounds: C_4BNH_{12}/C_4BNH_6 and $C_2B_2N_2H_{12}/C_2B_2N_2H_6$ (UO).

- Predicted properties of borane-imidazole complexes with potential to improve release kinetics.

- Extensive predictions of the thermodynamic and spectroscopic properties for hydrazine regeneration schemes.

- Continued to predict thermodynamics for regeneration schemes for process simulations.

- Developed new thermodynamic models for metal substituted $M/BH_2NH_3^-$ and $M/NH_2BH_3^-$ complexes. M = Sc, Ti, V, Cr (PNNL, LANL, U. Mo). Calculations of transition states for the elimination of H_2 from metal complexes

• Exploring different CBNH compounds based on BH₃-imidazole structure computationally and experimentally and new routes to AB.

C₄BN Ring Chemistry with S. Liu (Oregon)

• Dehydrogenation of C₄BN Cycles – Substituent Effects

• G3MP2 Reaction Energies as a Function of Substituent for the Sequential Addition of H_2 in kcal/mol at 298 K.

• Provided detailed step-wise H₂ release energetics for new compounds and spectroscopic interpretations.

- Predicted optimal compounds to synthesize in terms of release energetics.
- Investigated role of substituent effects on thermodynamics.
- Close interaction with UO on choice of molecular systems.

Dehydrogenation of Metal-Substituted Borane Amines

Reaction	Number of Species	Reaction Energy (298 K)	# H ₂ released exothermically
$V(NH_2BH_3)_5 \rightarrow V(NBH)_5 + 10H_2$ (overall)	52 x 2 (C _{4v} /D _{3h})	149.0	7
$V(BH_2NH_3)_5 \rightarrow V(BNH)_5 + 10H_2$ (overall)	52 x 2 (C _{4v} /D _{3h})	142.4	9
$Ti(NH_2BH_3)_4 \rightarrow Ti(NBH)_4 + \frac{8}{2}H_2$	35	112.2	5
$Ti(BH_2NH_3)_4 \rightarrow V(BNH)_4 + \frac{8}{2}H_2$	35	75.8	7
$Si(NH_2BH_3)_4 \rightarrow Si(NBH)_4 + \frac{8}{2}H_2$	35	62.8	5
$Si(BH_2NH_3)_4 \rightarrow Si(BNH)_4 + \frac{8}{2}H_2$	35	90.3	6
$C(NH_2BH_3)_4 \rightarrow C(NBH)_4 + \frac{8}{2}H_2$	35	111.2	5
$C(BH_2NH_3)_4 \rightarrow C(BNH)_4 + \frac{8}{2}H_2$	35	94.8	6
$AI(NH_2BH_3)_3 \rightarrow AI(NBH)_3 + \frac{6}{2}H_2$	20	74.3	4
$AI(BH_2NH_3)_3 \rightarrow AI(BNH)_3 + 6H_2$	20	48.2	5

- Predicted thermodynamics for $M^{+n}/(-NH_2BH_3)_n \& M^{+n}/(-BH_2NH_3)_n$ compounds.
- How many H₂ can be eliminated and energy for H₂ elimination vs. B-N bond breaking?
- Inverse binding species can store more H_2 in terms of the thermodynamics for release.

Dehydrogenation Pathways and B-N BDE for the Metal Borane Amines

Transition States for H₂ Removal from Li and Na-Substituted Ammonia Boranes

• Reaction energies (ΔH_{298K}) calculated at the B3LYP level with the DZVP2 (Li) and DZVP (Na) basis sets.

Reaction barriers higher than that in BH_3NH_3 of 34.6 kcal/mol (36.4 kcal/mol, CCSD(T)/CBS) g showing that a catalyst is needed or possibly a dimer reaction as previously studied by us.

Transition States for H₂ Removal from AI-Substituted Ammonia Boranes

Reaction barriers higher than that in BH₃NH₃ of 34.6 kcal/mol (36.4 kcal/mol, CCSD(T)/CBS) showing that a catalyst is needed or possibly a dimer reaction as previously studied by us.

10

Amino(Imidazolo)-Boranes for Better H₂ activation

- Study hydrogen elimination from azolium borohydrides (polymeric amine borane analogs).
- Expand to include 1,2,4-triazoles and tetrazole.
- Reduced basicity of heterocyclic systems containing multiple nitrogens is such that amineborane adduct formation from the neutral is difficult and the stability of the initially formed adducts is marginal.

• Hydrogen evolution was observed during the initial borane complexation step of these reactions.

• Azole-borane adducts by starting from the more basic azolides (azole-anions) showed only transient stability (loosing hydrogen, but reverse reaction not yet acheived in the laboratory).

Amino(*Imidazolo*)-Boranes to improve H₂ activation Dehydrogenation Reactions (298K) at the G3MP2 Level in kcal/mol

 $\mathsf{BH}_3\mathsf{NH}_3 \to \mathsf{BH}_2\mathsf{NH}_2 + \mathsf{H}_2: \ \Delta \mathsf{H} = -5.1$

- Wide range of new candidates for H₂ elimination studied
- Most have favorable thermodynamics and are backup materials due to weight %

H_3B-N Bond Dissociation Energies (ΔE_{0K}) in kcal/mol for the Azole Boranes at the G3MP2 Level

In some cases, B-N Lewis acid-base bond energies are low, especially to –N=X centers
Can tuning the B-N bond energies improve the kinetics?

Calculated Hydride Affinities (HA, 298K) in kcal/mol for the Azole Boranes at the G3MP2 Level

- These compounds are strong Lewis acids (large hydride affinities)
- New ways to control H₂ release?
- Serve as H⁻ transfer agents in regeneration processes?

Acidities (298K) in kcal/mol and pKa's relative to nitric acid for the Azole Boranes at the G3MP2 Level

- Compounds can be very strong acids
- Can this property be exploited to improve control of kinetics for H₂ release?

- Lewis acid-base exchange reactions utilized as a strategy for the production of amine boranes.
- Routes involving digestion to LBX_3 compounds that are converted to LBH_3 by hydrogenolysis or metathesis with hydride donors followed by displacement of L with ammonia have been demonstrated.
- The B-N bond energies for AB and for methyl substituted AB on both B and C have been reliably predicted by us for the free molecules from high level ab initio electronic structure calculations. Ligand displacement reactions and liquid fuels.
- Explore new exchange mechanisms in the gas phase and in solution.
- New hydrazine process: develop mechanisms based on calculated thermodynamic and spectroscopic properties
- Develop first reliable models for the thermodynamic properties of different forms of spent fuel
- New approach to 1st fill chemistry.

Process Analysis & Simulation Requires Physical Properties Thermodynamics for Models of Spent Fuel

Compounds	ΔH_{gas}	ΔH _{liquid}	ΔH _{solid} (298K)	BP _{calc/expt}	ΔH_{vap}
"BNH ₂ "	-118.5	-126.0	-126.6	327/326	7.5
"BNH _{1.6} "	-215.5	-227.8	-232.5	492	12.3
"BNH _{1.25} "	-369.6	-386.5	-393.5	678	16.9
"BNH"	-569.0	-592.8	-606.0	951	23.8
BH ₃ NH ₃	-14.6	-31 to -32	-36.6 ± 2.4	663	17

Developed validated, new approach with new atomic parameters to predict T_{BP}, ΔH_{vap}, ΔH_{liquid} for reactor and separations design. Uses accurate calculated ΔH_{gas} values.
Data used in process simulations at Dow for 1st fill and regeneration schemes.
First reliable predictions of the thermodynamics of spent fuel models in different phases.
Experimental feedback in terms of compounds to study T_{BP} fit to process simulation data.

17

Synthesis of AB: Borane Transfer Technology

- A borane transfer process has been developed based on a DuPont Patent (No. 5,034,464; A.J. Arduengo, July 23, 1991))
- New process facilitates transfer of a BH_3 unit from sodium borohydride to a variety of amines (including ammonia) with the intermediacy of a proprietary borane transfer agent.
- Overall yield maxima is typically 80 95%.
- Ionic Liquids studies as Borane Transfer Agent/Reaction Medium

Lewis Acidities: The Ability to Bind H⁻, F⁻, and Other Bases

FA

66.6

67.9

79.4

84.9

89.9

39.7

53.3

67.0

72.1

88.9

95.8

99.9

29.0

47.3

69.0

82.1

96.0

102.4

105.9

28.1

44.4

73.3

Molecule HA H₃B 73.7 H₂BF 63.2 80.9 H₂BCI 87.3 H₂BBr H_2BI 94.3 H_2BNH_2 37.8 H₂BOH 48.4 H₂BSH 69.8 HBF₂ 60.0 HBCl₂ 88.1 HBBr₂ 97.3 106.0 HBI_{2} 24.0 $HB(NH_2)_2$ $HB(OH)_{2}$ 36.6 $HB(SH)_{2}$ 72.7 BF₃ 70.5 95.8 **BCI**₃ BBr₃ 104.9 BI_3 112.6 19.8 $B(NH_2)_3$ $B(OH)_3$ 31.8 $B(SH)_3$ 75.2

Lewis acid strength depends on the electron withdrawing and back donating ability of ligands on B. The OH, NH₂, and SH groups show low acidities. The H- and F- affinities of the $BH_{3-n}X_n$ compounds exhibit linear correlations with the proton affinity of X⁻ for most X ligands.

The dominant effect in determining the magnitude of the Lewis acidity is the strength of the BX₃-F bond. The main contributor to the relative differences in the Lewis acidities of BX₃ for X a halogen is the electron affinity of BX₃. The electron affinity of BX₃ is strongly influenced by the charge density in the empty p_{τ} LUMO on boron so the amount of π -back donation from the halogen to boron is crucial.

 First reliable predictions of the Lewis acidities and hydride affinities of these boron compounds

 Benchmarks for larger substituents for use in PNNL & LANL regeneration schemes

Gas phase binding energies (- ΔH°) of select Lewis bases (L) with BH₃ calculated at the DFT/B3LYP and G3MP2 levels of theory at 298 K

Ligand L	B3LYP/DZVP2	G3MP2
NH ₃	25.2	27.7 (27.7)
NMe ₃	30.4	38.0 (37.8) [39.2]
NEt ₃	26.6	35.6
n-propylamine	30.1	33.7
s-butylamine	28.9	33.1
piperidine	32.5	38.0
NPh ₃	5.6	17.6
Ру	29.6	33.4
2,6-Lut	26.1	30.8
PH ₃	18.4	22.1 (22.5)
PMe ₃	32.6	38.3
PEt ₃	32.5	39.1
PPh ₃	29.2	35.2
P(OMe)Me ₂	33.4	40.1
P(OMe) ₂ Me	32.2	39.8
P(OMe) ₃	30.9	40.0
AsH ₃	11.3	(17.8)
AsEt ₃	22.3	30.1***
AsPh ₃	19.9	24.2***
SMe ₂	19.8	25.3 [25.8]
SEt ₂	20.4	26.2
SPh ₂	14.8	21.0
THF	16.7	21.4
Et ₂ O	12.1	17.7 [20.6]
Me ₂ O	14.9	19.8

First reliable set of A-B Lewis acid-base dative bond energies
G3MP2 is in excellent agreement with experiment and accurate CCSD(T)/CBS calculations by us.

• DFT is not reliable enough for process simulations.

• Data needed for design of ligand displacement reactions for PNNL and LANL regeneration schemes.

Energies in kcal/mol Values in () are CCSD(T)/CBS Values in [] are experiment *** MP2 isodesmic + CCSD(T) for AsH₃ 20

Equilibrium and rate parameters determined for ammoniation of triethylamine:BH₃ (J. Potter & D. Camaioni, PNNL)

Favorable equilibrium, 2nd order kinetics, strong dependence of rate on T ... AB can be recovered from product mixture.

21

LANL Novel Regeneration Process

• New LANL regeneration process: Add hydrazine to spent fuel to make N_2 + BH_3NH_3

• Simpler one-pot process which needs only a single reactor to improve efficiency

 Complicated chemistry so need for mechanism interpretation & development.

• Need to regenerate N_2H_4 from $N_2 + H_2$

Original LANL multi-step regeneration scheme

Examples of 1st Addition of Hydrazine to BNH_x

Los Alamos

23

2^{nd} addition of N_2H_4 to Trans- $B_3N_5H_{10}$: ΔH_{298} and ¹¹B NMR

3^{rd} addition of N₂H₄ to Cis-o1,3 trans-B₃N₅H₁₀(NH₂)₂: $\Delta H_{298} \& {}^{11}B NMR$

3rd addition of hydrazine can lead to complex structures and continued fragmentation.

A Novel Hydrogen Activation Process

• Lewis acid-base pairs need not be "frustrated" in their reactivity towards activating H_2 . Reaction can occur at temperatures as low as -80 °C.

• Established that the interaction of H_2 with the electrophile is a key step in the activation process.

• Electrophiles to replace the $Fe(CO)_5$ such as **BBr**₃, B(OCH₃)₃, 1-bora-adamantane, and **trityl cation** reacting with an imidazolylidene nucleophile have been investigated. **Crimson** compounds work.

• Provided another way to make H_2 into a proton and hydride (like BH_3NH_3) or like the PNNL work for regeneration cycles.

• Imidazolium acylferrate formed in the absence of H₂ (either at -78 °C or RT).

• In the presence of H₂ at -78 °C, obtained the imidazolium hydridoferrate salt formed (hydrogen fixation).

• Non-ferrous metals incorporated in process (Cr & Al)

• The scope and utility of the reaction especially for regeneration investigated

• Experiments with a partner in Bonn, Germany allowed the study of the reaction in a low temperature atuoclave.

Collaborations

The UA team is involved in extensive collaborations with Center partners as outlined in the presentation especially in the use of computational chemistry to support Center goals. The UA computational effort is fully integrated with the Center partners.

Examples:

External computational collaborations

- Energetics and spectroscopy for AB compounds: LANL, PNNL, Penn
- Release and regeneration mechanisms: LANL, PNNL, Penn, UC-Davis, UW
- Polymerization mechanisms: LANL, PNNL, Penn
- Catalyst design: CoE
- Spectroscopic predictions: CoE
- Nanoparticles & main group chemistry: UC-Davis
- $C_x B_y N_z H_{12}$ thermodynamics: UO & UW
- (E(NH₂BH₃)_m "metal" thermodynamics & kinetics: U. Mo., PNNL, LANL

Experimental collaborations

- Organic/main group chemistry: LANL
- Institut für Anorganische Chemie: Bonn, Germany

Future Work: Beyond The End

• New funding had been obtained from the Deutscher Akademischer Austausch Dienst (DAAD) to fund further experimental studies into the promising carbene H_2 Systems

• Frederic Luis Condin (Germany) selected as new co-worker for the experimental program.

• Funding applications pending for experimental work on phosphous-based chemical hydrogen storage systems (DAAD & NSF)

• Computational effort will continue to collaborate with Center partners for thermodynamic and kinetic predictions as support allows.

UA Summary

• Relevance: Develop new materials for chemical H₂ storage to meet DOE needs. Address issues of System Cost, System Weight and Volume, and Spent Fuel Regeneration.

• Approach: Develop promising approaches to chemical H₂ storage for current and future DOE targets using computational chemistry and synthetic organic/inorganic chemistry

• Technical Accomplishments: Significant advances in predicting the thermodynamics of new H₂ chemical hydrogen storage systems and for a broad range of regeneration mechanisms. Developed new approaches for predicting thermodynamic properties for process simulations for 1st fill and regeneration. Synthesized imidazole borane adduct that readily releases hydrogen at room temperature. Developed new understanding of thermodynamic properties of spent fuel and hydrazine regeneration mechanisms.

• Collaborations: Provide computational chemistry support for the DOE Center of Excellence in Chemical Hydrogen Storage. Interact with all partners. Interact closely with LANL on organic chemistry synthetic strategies.

• Future Research: Funding for project complete as of 3-31-2010 with extension (no additional funds) to complete final report. Support thermodynamic needs for completion of Center projects. Complete final report.

UA Summary Table

Storage Parameter: DOE 2010 System Targets	Carbene/Cyanocarbon	Imidazolo Borane
Material Gravimetric Capacity: 6 wt%	Current: 2% Ultimate for C ₂ N ₂ H ₆ polymer: 10.3%	Current: 1% Ultimate: 7.1%
Material Volumetric Capacity: 0.045 kg/L	Current: 0.045 Ultimate: 0.098	Current: ~0.02 Ultimate: 0.098
Dehydrogenation Rate 0.02g/s-kW	In progress for polymer	Rate of H ₂ release: 9.6 ± 0.5 M ⁻¹ s ⁻¹
Storage Efficiency Center Goal: 50% Near thermoneutral	Exothermic: -5 kcal/mol Ultimate: Thermoneutral	In progress