

Discovery of H₂ Storage Materials: LiMgN and Mg-Ti-H

Z. Zak Fang and H. Y. Sohn University of Utah

Project ID ST062

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline

- Start March 2005
- Finish March 2011
- Percent complete 90%

Budget

- Total project funding DOE share: ~\$950K Contractor share: \$240K
- Funding received for FY09: \$280K
- Planned Funding for FY10: \$0K

Barriers

- Reversible hydrogen content not sufficient (MYPP Barrier A),
- Inadequate kinetic properties (MYPP Barrier B)
- Desorption T's too high (MYPP Barrier B)

MHCoE Partners

- JPL, CalTech, GE, UNR, U Hawaii, SNL, SRNL, ORNL, U Pitt, CMU, Georgia Tech, Intematix,
- Project Lead: U of Utah

Objectives and Impact

Overall

- Discover new solid hydrides that meet reversibility and kinetics requirements
- Develop chemical vapor synthesis process (CVS) for production of nanosized solid metal hydrides
- Demonstrate the effectiveness and unique properties of nanosized solid hydride materials

FY09-10

- Study thermodynamic properties of hydrogen storage using LiMgN
- Study kinetic properties of hydrogen storage using LiMgN
- Search for catalytic additives that improve kinetics of hydrogen storage using LiMgN
- Study the kinetics of hydrogen storage of high-energy-high-pressure milled MgH₂-0.1TiH₂ system

- Exploit potentials of ternary nitrides.
- Use an ultra-high-energy high-pressure milling method and a chemical vapor reaction technique for synthesis of nano particles and study of the effect of nanosize scale (≤ 10 nm).
- Discover and identify new candidate materials through collaborations with MHCoE Theory Group.
- Using a two-step strategy for identifying research path among multiple candidate materials:
 - rapid-screening using in-house tools (e.g. TGA, XRD)
 - *in-depth study by collaborating with MHCoE partners* (NMR, in-situ XRD etc),
- Implement a criteria based on ΔH for select/down-select candidate materials.

Milestones and Go/No-go Decisions

Month/Year	Milestone or Go/No-Go Decision	Milestone Status
April – 06	Milestone: Complete design and set-up of the chemical vapor synthesis reactor systems and demonstrate their feasibility.	Achieved.
September – 08	A No-Go decision was made on Li ₃ AlH ₆ +3LiNH ₂ system because the Δ H of the dehydrogenation reaction is to high (~60 KJ/mol.H ₂)	Completed
March – 2010	Go/No-Go Decision will be made on LiMgN based on comprehensive characterizations of the thermodynamic and kinetic properties of LiMgN with additives.	80% complete
March - 2011	Milestone: Full report, conclusions, and recommendations on selected materials.	On track

Two promising materials discovered in the past three years:

I. Reactions of LiNH₂ with lithium alanate materials

 $Li_3AlH_6 + 3LiNH_2 \longleftrightarrow Al + 3Li_2NH + \frac{9}{2}H_2$

-- Expected to have theoretical hydrogen capacity in the 6-7 wt% range, coupling known reactions...down-selected due to poor kinetics.

The Li₃AIH₆/LiNH₂ material was "downselected", removed from further study

II. Reactions Leading to LiMgN

GeorgiaInstitute of Technology

 $MgH_2 + LiNH_2 \rightarrow LiMgN + 2H_2$

-- Theoretically predicted by MHCoE partners (Johnson, Sholl, Alapati) to have $\Delta H = 32kJ/molH_2$, with 8.2% theoretical hydrogen capacity.

^{*} Alapati, S.V.; Johnson, K.J., Sholl, D.S. J.Phys.Chem., 2006, 110, 8769

LiMgN Status at 3/2009 (last annual review)

 Reactions leading to LiMgN – theoretically predicted by *MHCoE partners* (*Johnson, Sholl, Alapati*) with 8.2% theoretical hydrogen capacity
LiMgN can be hydrogenated at T ~180 °C, confirmed by SRNL
In-situ XRD studies (GE) of hydrogenation/dehydrogenation indicate overall reaction scheme:

Recent results on LiMgN

- I. Preparation of LiMgN from the LiNH₂+MgH₂ reaction
- II. PCT study of hydrogenation and dehydrogenation using LiMgN as starting material

$Effects \, of \, ball \, milling \, intensity \, on \, the \, synthesis \, of \, pure \, LiMgN$

XRD patterns of LiNH₂/MgH₂ mixture after Jar-roll milling

FT-IR Spectra of LiNH₂/MgH₂ mixture after Jar-roll milling

Low-energy milling using a jar-rolling set-up preserves the $LiNH_2/MgH_2$ mixture, without premature release of H_2

Summary of the mixture of LiNH₂/MgH₂ after Jar-roll milling

Low-energy mill	12 hrs	24 hrs	48 hrs	96 hrs
TGA (wt.%)	9.19	8.02	7.87	7.91
XRD after milling	MgH ₂ , LiNH ₂	MgH ₂ , LiNH ₂	MgH ₂ , LiNH ₂	MgH ₂ , LiNH ₂
FT-IR after milling	LiNH ₂	LiNH ₂	LiNH ₂	LiNH ₂
XRD after dehydrogenation	LiMgN, Li ₃ N	LiMgN, Li ₃ N	LiMgN, Mg ₃ N ₂	LiMgN

After low-energy milling, reactions during subsequent heating produce pure (98.99%) LiMgN from the sample after longer milling time (>48h)

XRD patterns of LiNH₂/MgH₂ mixture after Spex milling

FT-IR Spectra of LiNH₂/MgH₂ mixture after Spex milling

High-energy milling leading to a series of reactions during the milling process, including the reactions between $LiNH_2$ and MgH_2 , and the subsequent release of hydrogen.

Summary of the mixture of LiNH₂/MgH₂ after Spex milling

High-energy mill	0.25 hr	0.5 hr	1 hr	2 hrs	4 hrs
TGA wt.%	9.124	8.192	5.723	4.511	3.422
XRD after milling	LiNH ₂ , MgH ₂	LiNH ₂ , MgH ₂	MgH ₂	MgNH	MgNH
FT-IR after milling	LiNH ₂	LiNH ₂	Mg(NH ₂) ₂ , Li ₂ Mg(NH) ₂ , MgNH	Mg(NH ₂) ₂ , Li ₂ Mg(NH) ₂ , MgNH	Li ₂ Mg(NH) ₂ , MgNH
XRD after dehydrogenati on	LiMgN, Mg ₃ N ₂	LiMgN, Mg ₃ N ₂	LiMgN, Mg ₃ N ₂	LiMgN, Mg ₃ N ₂ ,	LiMgN, Mg ₃ N ₂ ,

The product after high milling is a complex mixture of multiplephases. Pure LiMgN cannot be obtained from High-energy method12

Optimum milling procedures: 1). Spex milling separately (LiNH₂ & MgH₂/TiCl₃)(4h) + 2). Jar-roll milling together (LiNH₂+MgH₂+TiCl₃)(96h) 3). Dehydrogenation at 260°C with 2°C/min for 4h

Hydrogenation of LiMgN by PCT

Hydrogenation of LiMgN by PCT

FTIR spectrum analysis consistent w/ TGA and XRD data.

Hydrogenation of LiMgN by PCT

Search for catalysts for LiMgN

A series of catalytic additives affect the kinetics of LiNH₂+MgH₂ reactions.

Search for catalysts for LiMgN

Catalyst	Weight	Onset	Onset	Time needed for
Formula	Loss (%)	temperature	Time (min)	90% conversion
TiH ₂	6.9	104	38	~ 20
Со	9	76	24	~ 25
ScCl ₃	9.6	93	33	~ 17
Pd	7.3	98	35	~ 22
KH (50% Paraffin)	7.9	80	30	~ 23
TiCl₃	6.2	110	40	~ 17

A series of catalytic additives affect the kinetics of LiNH₂+MgH₂ reactions.

Summary of Ternary Nitride LiMgN:

- > Reversible,
- Reversible capacity 6-8wt%
- > Thermodynamics: $\Delta H = 33-38 \text{ KJ/mol.H}_2$,
- ➤ Kinetics Reasonable at 280 °C.
- > NH₃ issue: ~14 ppm in H₂ stream, Cumulative ~100 ppm.
- First plateau pressure is very low (<<1 bar) reducing usable wt%.</p>
- Must reduce the reaction temperature. Efforts underway to use additives and nano engineering. 19

Non-equilibrium Mg-Ti-H Material System

- Non-equilibrium Mg-Ti thin film systems have been demonstrated to have significant reversible hydrogen storage capacities^{1,2}.
- Can thin film material be replicated in powder or bulk form?
- Hydrogen storage of nano-sized MgH₂ with TiH₂ additives, synthesized by high energy high pressure ball milling process was studied.

¹ P. Vermeulen, R.A.H. Niessen, P.H.L. Notten, "Hydrogen storage in metastable MgyTi(1- y) thin films", Electrochem. Commun. 8 (2006) 27-32.

². B. Clemens et al. MHCoE internal communication.

Excellent stability after 100 cycles at 290 °C. ~6.0 wt% reversible capacity.

Hydrogen Storage of nano sized scale: MgH₂-8mol%TiH₂, particle size – 5-10 nm

System	$\Delta H (kJ/K mol H_2)$	$\Delta S (J/mol H_2)$
Pure MgH ₂ , (Sandia Database)	-74.6	-135.1
Pure MgH ₂ , (MRS Bull. Sept. 2002)	-70.8	-125.6
Pure MgH ₂ , (HSC calculation)	-75.6	-133.9
MgH ₂ -TiH ₂ -HEHP (Exp. Data, U Utah)	-68.2	-126.9
MgH ₂ -TiH ₂ -HEHP (Exp. Data, HRL)	-65.5	-118.3
Mg ₂ Ni, (Sandia Database)	-64.9	-123.4
Mg ₂ Ni, (MRS Bull. Sept. 2002)	-53.4	-104.1

Using nano size (5-10 nm) and TiH₂ additives, the Δ H value was changed, but so was Δ S. The net effect on Δ G very small. Thus, P_{eq}, did not change significantly.

Hydrogen Storage of nano sized scale: MgH₂-8mol%TiH₂

Comparison of hydrogen uptake and release at the 1st and 80th cycle

A) Isothermal dehydrogenation of the milled $MgH_2/0.1TiH_2$ under 1kPa hydrogen pressure at 300 °C during the 1st and 80th cyclic kinetics measurements, respectively; B) Isothermal hydrogenation of the dehydrogenated $MgH_2/0.1TiH_2$ under 2 MPa hydrogen pressure at 300 °C during the 1st and 80th cyclic measurements, respectively. 23

Hydrogen Storage of nano sized scale: MgH₂-8mol%TiH₂

Hydrogenation rate is high when the temperature is $>210^{\circ}$ C

Isothermal hydrogenation of the milled Mg-Ti-H under 2MPa H_2 pressure at 210, 240, 270 and 290 °C, respectively.

Hydrogen Storage of nano sized scale: MgH₂-8mol%TiH₂, particle size – 5-10 nm

Significant H₂ uptake by Mg at room temperature

Isothermal hydrogenation profiles of the Mg-Ti-H system at room temperature.

THE UNIVERSITY OF UTAH

Hydrogen Storage of nano sized scale: MgH₂-8mol%TiH₂

 $kt = -\ln (1 - \alpha) \tag{3}$

26

Synthesis of Ti-doped Mg nanopowder by a thermal plasma process

Schematic diagram of the plasma reactor system

(1) entrained-flow powder feeder for precursors (MgH₂+TiCl₃)
(2) plasma gun, (3) cylindrical reactor, (4) cooling chamber,
(5) powder collector, (6) offgas exhaust system.

X-ray diffraction patterns of the product powder

SEM micrograph of the product powder

Synthesis of Mg nanowire by electric furnace

Schematic diagram of the furnace reactor system

SEM micrograph of the product Mg nanowire

X-ray diffraction patterns of the product Mg nanowire

FY2010 -2011:

- Search for LiMgN additives to lower H₂ release temperature
- Thermo and kinetic studies of LiMgN with additives cycling using PCT instrument
- > Understand the effects of TiH_2 on MgH_2
- Continue to search new materials based on new concepts.

- Collaborations with the MHCoE Theory Group (U Pitt and Georgia Tech) on reactions mechanisms of hydrogen reactions based on LiMgN,
- Collaboration with SRNL on kinetics of LiMgN
- Collaborations within MHCoE (JPL, Cal Tech) on using NMR for in-depth characterizations,
- Collaborate with Univ of Nevada-Reno on detailed study of phase transformations in Li-Mg-N-H systems.
- Collaborations with SNL on non-equilibrium Mg-Ti-H.
- Collaboration with MHCoE Additive Screening Group on finding additives to improve kinetics.

- *Relevance* Discovering and synthesis of solid hydrides that can reversibly store hydrogen.
- ApproachExploit potentials of ternary nitrides and non-equilibrium
alloys of Mg (Mg-Ti)

Technical Accomplishments and Progress

Characterized and studied thermodynamic and kinetic properties of reversible H_2 storage using LiMgN. Demonstrated effects of nanosize scale (10 nm) on cyclic H_2 storage of MgH₂ with TiH₂ additive.

Technology collaborations Active partnership with theory and analytical characterization group.

Future plan Investigate effects of additives on kinetics of H_2 storage using LiMgN. Investigate the potential of a new class of materials for H_2 storage (to be disclosed).