First-Principles Modeling of Hydrogen Storage in Metal Hydride Systems

J. Karl Johnson David S. Sholl University of Pittsburgh & Georgia Institute of Technology Project ID # 9 June 2010

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: FY05
- Project end date: FY10
- Percent complete: 100%

Budget

- Requested total: \$1.05M (DOE)
- Cost sharing: \$0.33M
- FY09 \$225K (DOE)
- FY10 \$64K (DOE)

Barriers

- A. System weight and volume
- E. Charging/discharging rates (kinetics)
- P. Lack of Understanding of Hydrogen Physisorption and Chemisorption

Partners

- Caltech, HRL, U. Hawaii, JPL,
 U. Missouri, NIST, Sandia,
 Stanford, UIUC, U. Utah
- Coordination of theory work within MHCoE through the theory working group

Objectives-Relevance

Overall Objectives

- Predict new metal hydrides with favorable thermodynamics
- Compute interfacial properties of hydrides
- Address fundamental processes in hydrogenation

Specific Objectives for FY09-FY10

- Complete reaction screening including multistep and metastable reactions and new additions to the database
- Finalize work on thermodynamics of multiple gas-phase species
- Conclude study of thermodynamics of amorphous and crystalline closo-borane structures such as MgB₁₂H₁₂ and related materials in the screening of candidate reactions
- Finish work on mixed metal hydrides

Milestones

Month/Year	Milestone or Go/No-Go Decision		
Feb-07	Identify single-step reactions having acceptable hydrogen gravimetric densities and thermodynamics using the automated free energy search procedure. Paper has now been published: <i>J. Phys. Chem. C</i> , 112 , 5258-5262 (2008).		
Jun-08	Identify and classify multi-step and metastable reactions having acceptable hydrogen capacities and thermodynamics using the automated free energy search procedure. Interesting multi-step reactions have been identified. More calculations and analysis required.		
Sept-08	Investigate dehydrogenation/hydrogenation pathways for $Mg(BH_4H)_2$ in concert with experimental efforts. Experiments have identified $Mg(B_{12}H_{12})$ as a possible amorphous phase intermediate.		

Approach

- We use first principles density functional theory to compute structures and energies of solids and gas phase species
- Phonon density of states calculations are performed for finite temperature thermodynamics
- A free energy minimization linear program is used for screening mixtures for promising reactions
- Surface energy calculations are used to assess nanoparticle effects on the thermodynamics
- First principles molecular dynamics is used to generate amorphous phases
- Transition state theory employed for studying surface reactions and diffusion mechanisms

Technical Accomplishments: New Database Entries

We have added 147 new compounds in FY09-FY10 containing AI-B-C-Ca-K-Li-Mg-N-Na-Sc-Si-Ti-V-H Structures taken from ICSD and recent literature

(K(NH₂))(NH₃)₂, (Li(NH₃)₄)₂(B₆H₆)(NH₃)₂, (NH₂)CN, (NH4)₂B₁₂H₁₂, (NH₄)B(CN)₄, Al(BH₄)₃, Al₁₄Mg₁₃, Al₁₈Mg₃Ti₂, Al₂₃V₄, Al₂MgC₂, Al₃₀Mg₂₃, Al₄₅V₇, Al₄C₃, Al₄Ca, AlB₁₂, AlNC₃H₁₀, B₁₀C₆H₃₀N₂, B₁₃C₂, B₁₃N₂, B₂₀C₃H₃₀N₂, B₄C, BC₂N, BC₄KN₄, BCH₅N₂, C₁₂N₆, C₂Ca, C₂H₁₈N₁₈, C₂H₄N₄, C₂N₂, $C_2N_2(NH)$, C_3N_4 , C_5N_4 , $Ca(BH_4)_2$, $Ca(NH_2BH_3)_2$, $Ca_{11}N_6(CN_2)_2$, Ca_2Si , $Ca_2Si_5N_8$, $Ca_{4}AI_{3}Mg$, $Ca_{4}N_{2}(CN_{2})$, $Ca_{4}TiN_{4}$, $Ca_{5}(Si_{2}N_{6})$, CaAISi, $CaB_{12}H_{12}$, CaB_{4} , $CaC_{4}N_{6}$, CaSiN₂, CH₃NH₂BH₃, H₉CN₉, K(HCN₂), K₂(B₁₀H₁₀), K₂B₁₂H₁₂, K₂B₆H₆, K₂Li(NH₂)₃, K₂LiAlH₆, K₂Mg(NH₂)₄, K₂Na(NH₂)₃, K₂NaAlH₆, K₃Si₆N₁₁H₆, K₅C₂HN₄, K₈Si₄₆, KAl(NH₂)₄, KB₂₁H₁₈, KBH₄, KC₄N₃, KC₈, KCaN₃H₆, KLi₃(NH₂)₄, KLi₇N₈H₁₆, KNH₂, KSi, Li(B(CN)₄), Li(NH₂BH₃), Li₁₂Si₇, Li₁₃Si₄, Li₁₅Si₄, Li₂B₁₂C₂, Li₂B₁₂H₁₂, Li₂B₁₂Si₂, Li₂Ca(NH)₂, Li₂MgSi, $Li_2Na_4N_2$, Li_2NaN , $Li_3(BH_6)$, $Li_3Na_3N_2$, Li_3NaSi_6 , $Li_4Na_2N_2$, Li_5NaN_2 , $LiAIB_{14}$, $LiAIC_4H_{16}N_4$, LiAIMg₁₀H₂₄, LiB, LiB₁₃C₂, LiBH, LiBH₂, LiK(BH₄)₂, LiMg, LiMgH₃, LiN₃Si₂, LiNa₂(NH₂)₃, $LiNa_2AIH_6$, $LiNa_2N$, $LiNa_5N_2$, $LiSc(BH_4)_4$, $LiSi_3C_9H_{27}N_2$, $Mg(BH_4)_2(NH_3)_2$, $Mg_2B_{24}C_1$, Mg₇TiH₁₆, MgAl2Si₂, MgB₁₂C₂, MgB₁₂H₁₂, MgB₁₂Si₂, MgC₄N₆, N₂B₁₀H₁₈, N₂BH₇, N₃B₃H₁₂, N₃B₃H₆, N₄B₁₀H₂₂, N₄B₁₀H₈, N₄B₉H₁₁, Na₂(B₁₀H₁₀), Na₂B₂₉, Na₃(BN₂), Na₃B₂₀, Na₃C₆N₉, Na₄Si₄, Na₅Al₃H₁₄, Na₈Si₄₆, NaAl(NH₂)₄, NaB(CN)₄, NaB₁₅, NaBH₄, NH₃BH₃, NH₄HCN₂, Sc₁₅C₁₉, Sc₂AlC, Si₂B₂C₁₂H₃₇N₅, Si₂C₇H₁₈N₂, SiB₃, SiC, Ti₂AIC, Ti₆Si₂B, TiV, V₁₂AI₃C₈, V₂N, V₅Si₃, V₅SiB₂, VC₈H₂₄N₄

Technical Accomplishments: Promising New Single Step Reactions

Interesting reactions (2 reactions)		ΔU ₀ (kJ/mol H ₂)
$2MgH_2+Mg(NH_2)_2 \rightarrow Mg_3N_2+4H_2$	7.4	26
$LiH+2LiNH_2+KBH_4 \rightarrow Li_3BN_2+KH+4H_2$	7.48	43.61
Reactions involving B₁₂H₁₂ species (10 reactions)		ΔU ₀ (kJ/mol H ₂)
$5\mathrm{Si}{+}10\mathrm{Mg}(\mathrm{BH}_4)_2{+}4\mathrm{KBH}_4 \rightarrow 5\mathrm{Mg}_2\mathrm{Si}{+}2\mathrm{K}_2\mathrm{B}_{12}\mathrm{H}_{12}{+}36\mathrm{H}_2$	8.1	37.3
$5Mg(BH_4)_2 + 2KBH_4 \rightarrow 5MgH_2 + K_2B_{12}H_{12} + 13H_2$		38.04
$4\text{LiBH}_4+5\text{Si}+10\text{Mg}(\text{BH}_4)_2 \rightarrow 5\text{Mg}_2\text{Si}+2\text{Li}_2\text{B}_{12}\text{H}_{12}+36\text{H}_2$		40.96
$5\mathrm{Si}+10\mathrm{Mg}(\mathrm{BH}_4)_2+2\mathrm{Ca}(\mathrm{BH}_4)_2 \rightarrow 5\mathrm{Mg}_2\mathrm{Si}+2\mathrm{CaB}_{12}\mathrm{H}_{12}+36\mathrm{H}_2$		41.18
$5Mg(BH_4)_2 + Ca(BH_4)_2 \rightarrow 5MgH_2 + CaB_{12}H_{12} + 13H_2$		43.09
$2\text{LiBH}_4 + 5\text{Mg(BH}_4)_2 \rightarrow 5\text{MgH}_2 + \text{Li}_2\text{B}_{12}\text{H}_{12} + 13\text{H}_2$	8.36	43.1
$5\mathrm{Si}+12\mathrm{Mg(BH_4)_2} \rightarrow 5\mathrm{Mg_2Si}+2\mathrm{MgB_{12}H_{12}}+36\mathrm{H_2}$		43.62
$Mg(BH_4)_2 \rightarrow (5/6)MgH_2 + (1/6)MgB_{12}H_{12} + (13/6)H_2$		47.06
$LiH+3Ca(BH_4)_2 \rightarrow 3CaH_2+(1/2)Li_2B_{12}H_{12}+(13/2)H_2$		56.53
$Ca(BH_4)_2 \rightarrow (5/6)CaH_2 + (1/6)CaB_{12}H_{12} + (13/6)H_2$		57.41

- Many of the single step reactions identified involved refractory materials, e.g., BN, TiB₂, etc.
 We have excluded reactions that involve C because of the
- We have excluded reactions that involve C because of the possibility of forming alkanes in the product stream.

Technical Accomplishments: Metastable Reactions

- The accuracy of the DFT calculations is estimated to be about $\pm 10 \text{ kJ/mol H}_2$
- It is therefore possible that reactions with DFT free energies ~10 kJ/mol H₂ higher than the reaction identified in the linear program may actually be lower in energy experimentally
- It is also possible that kinetic pathways will favor reactions with slightly larger free energies
- To account for these possibilities we have developed a method of identifying metastable reactions:
 - The linear program identifies the equilibrium reaction
 - Each one of the possible solid products is excluded in turn from the database and the linear program is run again
 - If the new run identifies a reaction with a free energy within 10 kJ/mol H_2 then the reaction is added to the metastable list
 - The process is repeated for excluding pairs, triples, etc. of compounds

Technical Accomplishments: Example of Metastable Reaction

Original reaction		wt.%	ΔU ₀ (kJ/mol H ₂)	T _{est} (K)
$LiH+2LiNH_2+KBH_4 \rightarrow Li_3BN_2+KH+4H_2$		7.48	43.61	508
Removed materials	Products of metastable paths	wt.%	ΔU ₀ (kJ/mol H ₂)	T _{est} (K)
-Li ₃ BN ₂	2LiH+LiNH ₂ +BN+KH+2H ₂	3.74	38.15	529
-KH	$LiH + \frac{4}{5}KBH_{4} + \frac{1}{5}Li_{3}BN_{2} + \frac{1}{5}KLi_{7}N_{8}H_{16} + \frac{4}{5}H_{2}$	1.5	46.64	541
-KH & KLi ₇ N ₈ H ₁₆	$\frac{69}{100}\text{LiH} + \frac{23}{100}\text{KBH}_{4} + \frac{31}{100}\text{K} + \frac{77}{100}\text{Li}_{3}\text{BN}_{2} + \frac{23}{50}\text{KNH}_{2} + \frac{323}{100}\text{H}_{2}$	6.04	47.66	549
-KH & KLi ₇ N ₈ H ₁₆ & K	$LiH + \frac{1}{3}KBH_4 + \frac{2}{3}Li_3BN_2 + \frac{2}{3}KNH_2 + \frac{8}{3}H_2$	4.99	47.44	550
-KH & KLi ₇ N ₈ H ₁₆ & KNH ₂	$K+Li_{3}BN_{2}+\frac{9}{2}H_{2}$	8.42	48.31	550
-KH & KLi ₇ N ₈ H ₁₆ & K & KNH ₂	$LiH + \frac{3}{7}KBH_{4} + \frac{4}{7}Li_{3}BN_{2} + \frac{2}{7}K_{2}Li(NH_{2})_{3} + \frac{16}{7}H_{2}$	4.27	48.8	565
-Li ₃ BN ₂ & KH	$\frac{13}{9}\text{LiH} + \frac{7}{9}\text{KBH}_{4} + \frac{2}{9}\text{BN} + \frac{2}{9}\text{KLi}_{7}\text{N}_{8}\text{H}_{16} + \frac{4}{9}\text{H}_{2}$	0.83	44.2	600
-KH & Li_3BN_2 & $KLi_7N_8H_{16}$ & KH & $KLi_7N_8H_{16}$ & $Li_3BN_2KNH_2$	$2LiH+LiNH_2+K+BN+\frac{5}{2}H_2$	4.68	47.82	606

Collaborations: Experimental

- Rebecca Newhouse, Sandia and Ewa Ronnebro (formerly Sandia)
 - We are computing the thermodynamics of the doped materials: $Mg_{1-x}Al_xB_2$ and $Mg(B_{(1-x)}C_x)_2$
- Y. Filinchuk, R. Černý, Grenoble, Geneva
 - Experimental powder XRD gave Mg(BH4)2 structure of P6₁, Our DFT calculations gave P6₁22 as the ground state, which prompted Filinchuk et al. to obtain single crystal XRD, which confirmed our predicted P6₁22 structure as the correct ground state. Chem. Mater., **2009**, *21*, 925.
- Channing Ahn, CalTech
 - Testing several systems we predicted to have favorable thermodynamics, including LiBH_4/TiH_2 and LiBH_4/CaH_2
- Zak Fang, Utah
 - We are providing calculations for the LiMgN system
- Andrew Goudy, DSU / Fred Pinkerton, GM
 - Independently both working on $CaH_2 + 6 LiBH_4$
- John Vajo, HRL
 - Testing several systems for which we have made predictions, including LiBC and $Mg(BC)_2$

Collaborations: Theory

We are working closely with many other computational people within the MHCoE:

- Mark Allendorf (Sandia, leader of Theory Group)
- Bruce Clemens (Stanford)
- Duane Johnson (Illinois)
- Ursula Kattner (NIST)
- Eric Majzoub (Missouri)

Future Work

- Finish and submit paper on multistep reactions
- Finish and submit paper on metastable reactions and additional database entries
- Revised and resubmit paper on B₁₂H₁₂